College of Computing and Information Technology, Shaqra University, P.O. Box 33, Shaqra 11961, Saudi Arabia.
Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt.
Sensors (Basel). 2022 Mar 18;22(6):2348. doi: 10.3390/s22062348.
Blood cancer, or leukemia, has a negative impact on the blood and/or bone marrow of children and adults. Acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML) are two sub-types of acute leukemia. The Internet of Medical Things (IoMT) and artificial intelligence have allowed for the development of advanced technologies to assist in recently introduced medical procedures. Hence, in this paper, we propose a new intelligent IoMT framework for the automated classification of acute leukemias using microscopic blood images. The workflow of our proposed framework includes three main stages, as follows. First, blood samples are collected by wireless digital microscopy and sent to a cloud server. Second, the cloud server carries out automatic identification of the blood conditions-either leukemias or healthy-utilizing our developed generative adversarial network (GAN) classifier. Finally, the classification results are sent to a hematologist for medical approval. The developed GAN classifier was successfully evaluated on two public data sets: ALL-IDB and ASH image bank. It achieved the best accuracy scores of 98.67% for binary classification (ALL or healthy) and 95.5% for multi-class classification (ALL, AML, and normal blood cells), when compared with existing state-of-the-art methods. The results of this study demonstrate the feasibility of our proposed IoMT framework for automated diagnosis of acute leukemia tests. Clinical realization of this blood diagnosis system is our future work.
血液癌症,或白血病,会对儿童和成人的血液和/或骨髓造成负面影响。急性淋巴细胞白血病 (ALL) 和急性髓细胞白血病 (AML) 是两种急性白血病亚型。医疗物联网 (IoMT) 和人工智能已经开发出先进技术,以辅助最近引入的医疗程序。因此,在本文中,我们提出了一种新的智能 IoMT 框架,用于使用显微镜血图像自动分类急性白血病。我们提出的框架的工作流程包括三个主要阶段,如下所示。首先,通过无线数字显微镜收集血液样本,并将其发送到云服务器。其次,云服务器利用我们开发的生成对抗网络 (GAN) 分类器自动识别血液状况——是白血病还是健康。最后,将分类结果发送给血液科医生进行医学批准。所开发的 GAN 分类器在两个公共数据集 ALL-IDB 和 ASH 图像库上成功进行了评估。与现有最先进的方法相比,它在二进制分类(ALL 或健康)方面达到了最佳的 98.67%准确率,在多类分类(ALL、AML 和正常血细胞)方面达到了 95.5%的准确率。这项研究的结果表明,我们提出的用于自动诊断急性白血病测试的 IoMT 框架是可行的。我们未来的工作是临床实现这种血液诊断系统。