Suppr超能文献

GEMCAT——一种基于基因表达预测代谢改变的新算法。

GEMCAT-a new algorithm for gene expression-based prediction of metabolic alterations.

作者信息

Sharma Suraj, Sauter Roland, Hotze Madlen, Prowatke Aaron Marcellus Paul, Niere Marc, Kipura Tobias, Egger Anna-Sophia, Thedieck Kathrin, Kwiatkowski Marcel, Ziegler Mathias, Heiland Ines

机构信息

Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.

Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway.

出版信息

NAR Genom Bioinform. 2025 Jan 31;7(1):lqaf003. doi: 10.1093/nargab/lqaf003. eCollection 2025 Mar.

Abstract

The interpretation of multi-omics datasets obtained from high-throughput approaches is important to understand disease-related physiological changes and to predict biomarkers in body fluids. We present a new metabolite-centred genome-scale metabolic modelling algorithm, the Gene Expression-based Metabolite Centrality Analysis Tool (GEMCAT). GEMCAT enables integration of transcriptomics or proteomics data to predict changes in metabolite concentrations, which can be verified by targeted metabolomics. In addition, GEMCAT allows to trace measured and predicted metabolic changes back to the underlying alterations in gene expression or proteomics and thus enables functional interpretation and integration of multi-omics data. We demonstrate the predictive capacity of GEMCAT on three datasets and genome-scale metabolic networks from two different organisms: (i) we integrated transcriptomics and metabolomics data from an engineered human cell line with a functional deletion of the mitochondrial NAD transporter; (ii) we used a large multi-tissue multi-omics dataset from rats for transcriptome- and proteome-based prediction and verification of training-induced metabolic changes and achieved an average prediction accuracy of 70%; and (iii) we used proteomics measurements from patients with inflammatory bowel disease and verified the predicted changes using metabolomics data from the same patients. For this dataset, the prediction accuracy achieved by GEMCAT was 79%.

摘要

从高通量方法获得的多组学数据集的解读,对于理解疾病相关的生理变化以及预测体液中的生物标志物至关重要。我们提出了一种新的以代谢物为中心的基因组规模代谢建模算法,即基于基因表达的代谢物中心性分析工具(GEMCAT)。GEMCAT能够整合转录组学或蛋白质组学数据,以预测代谢物浓度的变化,这可以通过靶向代谢组学进行验证。此外,GEMCAT允许将测量和预测的代谢变化追溯到基因表达或蛋白质组学的潜在改变,从而实现多组学数据的功能解读和整合。我们在来自两种不同生物体的三个数据集和基因组规模代谢网络上展示了GEMCAT的预测能力:(i)我们整合了来自工程化人类细胞系的转录组学和代谢组学数据,该细胞系线粒体NAD转运体功能缺失;(ii)我们使用了来自大鼠的大型多组织多组学数据集,基于转录组和蛋白质组进行训练诱导的代谢变化预测和验证,平均预测准确率达到70%;(iii)我们使用了炎症性肠病患者的蛋白质组学测量数据,并使用同一患者的代谢组学数据验证了预测的变化。对于这个数据集,GEMCAT实现的预测准确率为79%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c847/11783570/6be59705a2b7/lqaf003fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验