Suppr超能文献

监督式机器学习用于研究成人呼吸性窦性心律失常和异位心律相关因素的初步研究

Supervised Machine Learning to Examine Factors Associated with Respiratory Sinus Arrhythmias and Ectopic Heart Beats in Adults: A Pilot Study.

作者信息

Lahr Peyton, Carling Chloe, Nauer Joseph, McGrath Ryan, Grier James W

机构信息

Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND 58108, USA.

College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA.

出版信息

Hearts (Basel). 2024 Sep;5(3):275-287. doi: 10.3390/hearts5030020. Epub 2024 Jul 5.

Abstract

BACKGROUND

There are many types of arrhythmias which may threaten health that are well-known or opaque. The purpose of this pilot study was to examine how different cardiac health risk factors rank together in association with arrhythmias in young, middle-aged, and older adults.

METHODS

The analytic sample included 101 adults aged 50.6 ± 22.6 years. Several prominent heart-health-related risk factors were self-reported. Mean arterial pressure and body mass index were collected using standard procedures. Hydraulic handgrip dynamometry measured strength capacity. A 6 min single-lead electrocardiogram evaluated arrhythmias. Respiratory sinus arrhythmias (RSAs) and ectopic heart beats were observed and specified for analyses. Classification and Regression Tree analyses were employed.

RESULTS

A mean arterial pressure ≥ 104 mmHg was the first level predictor for ectopic beats, while age ≥ 41 years was the first level predictor for RSAs. Age, heart rate, stress and anxiety, and physical activity emerged as important variables for ectopic beats ( < 0.05), whereas age, sodium, heart rate, and gender were important for RSAs ( < 0.05).

CONCLUSIONS

RSAs and ectopic arrhythmias may have unique modifiable and non-modifiable factors that may help in understanding their etiology for prevention and treatment as appropriate across the lifespan.

摘要

背景

存在多种可能威胁健康的心律失常类型,有些广为人知,有些则尚不明确。这项初步研究的目的是探讨不同的心脏健康风险因素如何共同影响年轻、中年和老年人群的心律失常。

方法

分析样本包括101名年龄在50.6±22.6岁的成年人。通过自我报告获取了几个与心脏健康相关的显著风险因素。采用标准程序收集平均动脉压和体重指数。使用液压握力计测量力量。通过6分钟单导联心电图评估心律失常。观察并分析呼吸性窦性心律失常(RSA)和异位心律。采用分类与回归树分析。

结果

平均动脉压≥104 mmHg是异位心律的一级预测指标,而年龄≥41岁是RSA的一级预测指标。年龄、心率、压力和焦虑以及身体活动是异位心律的重要变量(<0.05),而年龄、钠、心率和性别对RSA很重要(<0.05)。

结论

RSA和异位心律失常可能有独特的可改变和不可改变因素,这可能有助于理解其病因,以便在整个生命周期中进行适当的预防和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a8/11784985/9f1b50e69ee1/nihms-2011978-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验