Suriaslan Afiqah Saffa, Budiantara I Nyoman, Ratnasari Vita
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS- Sukolilo, Surabaya 60111, Indonesia.
MethodsX. 2024 Dec 5;14:103084. doi: 10.1016/j.mex.2024.103084. eCollection 2025 Jun.
In recent years, Truncated Spline estimators in nonparametric regression for quantitative data have gained significant attention. However, in practical applications, it is common to encounter situations where the response variable is qualitative (binary). As a result, Truncated Spline nonparametric regression models designed for quantitative data cannot be directly applied to binary response cases. Therefore, a method is needed that able to handle the relationship between variables whose patterns change at certain sub-intervals, where the response is binary. This article aims to develop a multivariable Truncated Spline nonparametric regression estimator specifically for binary response data. The proposed method is applied to analyze unmet need achievement status in East Java Province, Indonesia, and the percentage of the poor population in Indonesia. The findings indicate that the Truncated Spline nonparametric regression method provides more accurate estimates compared to binary logistic regression. Some of the highlights of the proposed method are:•This research develops a nonparametric truncated spline regression model tailored for binary response data analysis.•Using the Akaike Information Criterion (AIC) to select optimal knot points.•Evaluating the performance of the proposed model in comparing performance of nonparametric Truncated Spline model for binary response and binary logistic regression with the data real application.
近年来,用于定量数据非参数回归的截断样条估计器受到了广泛关注。然而,在实际应用中,经常会遇到响应变量为定性(二元)的情况。因此,为定量数据设计的截断样条非参数回归模型不能直接应用于二元响应情况。所以,需要一种能够处理在某些子区间模式发生变化的变量之间关系的方法,其中响应是二元的。本文旨在开发一种专门用于二元响应数据的多变量截断样条非参数回归估计器。所提出的方法被应用于分析印度尼西亚东爪哇省未满足需求的实现状况以及印度尼西亚贫困人口的百分比。研究结果表明,与二元逻辑回归相比,截断样条非参数回归方法提供了更准确的估计。所提出方法的一些亮点包括:
• 本研究开发了一种专门用于二元响应数据分析的非参数截断样条回归模型。
• 使用赤池信息准则(AIC)选择最优节点。
• 通过实际数据应用,在比较二元响应的非参数截断样条模型和二元逻辑回归的性能时,评估所提出模型的性能。