Suppr超能文献

一种用于利用立体视觉对叶角动态进行高时间分辨率测量的自动化精准农业机器人的改进。

Modification of an automated precision farming robot for high temporal resolution measurement of leaf angle dynamics using stereo vision.

作者信息

Hennecke Frederik, Bömer Jonas, Heim René H J

机构信息

Institute of Computer Science, University of Göttingen, Goldschmidtstr. 7, 37077 Göttingen, Germany.

Institute of Sugar Beet Research, Holtenser Landstraße 77, 37079 Göttingen, Germany.

出版信息

MethodsX. 2025 Jan 13;14:103169. doi: 10.1016/j.mex.2025.103169. eCollection 2025 Jun.

Abstract

In agriculture, the plant leaf angle influences light use efficiency and photosynthesis and, consequently, the overall crop performance. Leaf angle measurements are used in plant phenotyping, plant breeding, and remote sensing to study plant function and structure. Traditional manual leaf angle measurements have limited precision as they are labor- and time-intensive due to challenging environmental conditions and highly dynamic plant processes. To enable more detailed studies on leaf angles, we modified a well-established automated farming robot to obtain high-resolution 3D point clouds at customizable intervals of individual plants using stereo vision. We demonstrate the system's accuracy and reliability, with minimal deviation from reference values. The method can be utilized by other researchers to gather data on leaf angles and other structural plant traits at regular intervals to access the dynamics of leaves, plants, and canopies. The system's low cost and adaptability can enhance the efficiency of crop monitoring in plant breeding and phenotyping experiments. Detailed documentation and code are available on GitHub.•An open-source farming robot is retrofitted to function as an automatic data collection platform•Hard to access leaf angles can be retrieved with high accuracy•Leaf angle dynamics can be observed with high temporal resolution.

摘要

在农业中,植物叶片角度会影响光利用效率和光合作用,进而影响作物的整体表现。叶片角度测量被用于植物表型分析、植物育种和遥感,以研究植物的功能和结构。传统的手动叶片角度测量精度有限,因为在具有挑战性的环境条件和高度动态的植物过程下,这种测量既耗费人力又耗时。为了能够对叶片角度进行更详细的研究,我们对一个成熟的自动化农业机器人进行了改进,利用立体视觉以可定制的间隔获取单个植物的高分辨率三维点云。我们展示了该系统的准确性和可靠性,与参考值的偏差最小。其他研究人员可以利用这种方法定期收集叶片角度和其他植物结构特征的数据,以了解叶片、植物和冠层的动态变化。该系统的低成本和适应性可以提高植物育种和表型分析实验中作物监测的效率。详细文档和代码可在GitHub上获取。•一个开源农业机器人经过改装后用作自动数据收集平台•难以测量的叶片角度可以高精度获取•可以以高时间分辨率观察叶片角度动态变化

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca6/11787487/df98c053e00c/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验