文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在自杀预防中的应用:利用深度学习方法进行早期检测。

Artificial intelligence in suicide prevention: Utilizing deep learning approach for early detection.

作者信息

Gaur Vikas, Maggu Gaurav, Bairwa Khushboo, Chaudhury Suprakash, Dhamija Sana, Ali Tahoora

机构信息

Department of Psychiatry, JNUIMSRC, Jaipur, Rajasthan, India.

Department of Psychiatry, Dr D.Y. Patil Medical College, Dr D Y PatilVidyapeeth, Pimpri, Pune, Maharashta, India.

出版信息

Ind Psychiatry J. 2024 Jul-Dec;33(2):226-233. doi: 10.4103/ipj.ipj_20_24. Epub 2024 Oct 29.


DOI:10.4103/ipj.ipj_20_24
PMID:39898082
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11784676/
Abstract

BACKGROUND: Suicide among students is increasing in India and is a matter of grave concern. Early identification of students contemplating suicide would facilitate emergency intervention and may save precious lives. AIM: Our primary objective was to construct an artificial intelligence (AI) model employing an artificial neural network (ANN) architecture to predict students at risk of suicidal tendencies. This initiative was prompted by the necessity to implement a proactive and technologically driven strategy for identifying competitive exam-bound students facing heightened vulnerability. The aim was to facilitate timely interventions aimed at reducing the risk of self-harm. MATERIALS AND METHODS: An AI model utilizing ANNs is devised for suicide risk prediction among exam-stressed students. A 33-feature input layer is curated based on literature and expert insights, with binary features assigned weighted values. A rigorous hyperparameter optimization approach using the Optuna library to select the most effective neural network model. Ridge regression was used to determine bias or variance in the dataset. Training and testing of the model are conducted using fictional and simulated profiles, respectively, and model performance is assessed through statistical metrics and the Cohen's Kappa coefficient, benchmarked against expert evaluations. RESULT: The AI model demonstrates exceptional predictive capabilities for suicide risk assessment among competitive exam students. Quantitative Metrics: The model's accuracy of 98% aligns predictions with outcomes, distinguishing risk categories. Precision at 100% identifies cases within predicted risks, minimizing false positives. A recall of 97% identifies true risk cases, highlighting sensitivity. F1 Score: The model's F1 score of 98% balances precision and recall, indicating overall performance. Cohen's Kappa: With a coefficient of 1.00, the model's substantial agreement with experts underscores its consistent classifications. CONCLUSION: The study introduces an AI model utilizing ANNs for suicide risk prediction among stressed students. High precision, recall, and accuracy align with expert evaluations, highlighting its promise for timely risk identification. The model's efficiency in evaluating large populations swiftly indicates its clinical potential. Refinement and real-world validation remain future considerations.

摘要

背景:在印度,学生自杀现象呈上升趋势,这是一个令人严重关切的问题。尽早识别有自杀念头的学生将有助于进行紧急干预,并可能挽救宝贵的生命。 目的:我们的主要目标是构建一个采用人工神经网络(ANN)架构的人工智能(AI)模型,以预测有自杀倾向风险的学生。实施这一举措的原因是有必要为识别面临更高脆弱性的备考竞争性考试的学生,实施一种积极主动且技术驱动的策略。目的是促进及时干预,以降低自我伤害风险。 材料与方法:设计了一个利用人工神经网络的人工智能模型,用于预测考试压力大的学生的自杀风险。基于文献和专家见解精心策划了一个具有33个特征的输入层,为二元特征分配加权值。使用Optuna库采用严格的超参数优化方法来选择最有效的神经网络模型。采用岭回归来确定数据集中的偏差或方差。分别使用虚构和模拟的档案对模型进行训练和测试,并通过统计指标和科恩卡帕系数评估模型性能,以专家评估为基准。 结果:该人工智能模型在评估竞争性考试学生的自杀风险方面展现出卓越的预测能力。定量指标:该模型98%的准确率使预测与结果相符,区分了风险类别。100%的精确率识别出预测风险范围内的案例,将误报降至最低。97%的召回率识别出真正风险案例,突出了敏感性。F1分数:该模型98%的F1分数平衡了精确率和召回率,表明了整体性能。科恩卡帕系数:该模型与专家的一致性系数为1.00,突出了其分类的一致性。 结论:该研究引入了一个利用人工神经网络的人工智能模型,用于预测压力大的学生的自杀风险。高精度、召回率和准确率与专家评估相符,突出了其在及时识别风险方面的前景。该模型在快速评估大量人群方面的效率表明了其临床潜力。进一步完善和进行现实世界验证仍是未来需要考虑的事项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/4f71f42ababd/IPJ-33-226-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/dc09ab546a6e/IPJ-33-226-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/78df94243431/IPJ-33-226-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/4f71f42ababd/IPJ-33-226-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/dc09ab546a6e/IPJ-33-226-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/78df94243431/IPJ-33-226-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f328/11784676/4f71f42ababd/IPJ-33-226-g003.jpg

相似文献

[1]
Artificial intelligence in suicide prevention: Utilizing deep learning approach for early detection.

Ind Psychiatry J. 2024

[2]
Leveraging code-free deep learning for pill recognition in clinical settings: A multicenter, real-world study of performance across multiple platforms.

Artif Intell Med. 2024-4

[3]
InsightSleepNet: the interpretable and uncertainty-aware deep learning network for sleep staging using continuous Photoplethysmography.

BMC Med Inform Decis Mak. 2024-2-14

[4]
Acoustic Features for Identifying Suicide Risk in Crisis Hotline Callers: Machine Learning Approach.

J Med Internet Res. 2025-4-14

[5]
Enhanced osteoporotic fracture prediction in postmenopausal women using Bayesian optimization of machine learning models with genetic risk score.

J Bone Miner Res. 2024-5-2

[6]
Data-driven evolution of water quality models: An in-depth investigation of innovative outlier detection approaches-A case study of Irish Water Quality Index (IEWQI) model.

Water Res. 2024-5-15

[7]
An Explainable Artificial Intelligence Text Classifier for Suicidality Prediction in Youth Crisis Text Line Users: Development and Validation Study.

JMIR Public Health Surveill. 2025-1-29

[8]
AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data.

Int J Med Inform. 2025-6

[9]
Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM).

J Environ Health Sci Eng. 2024-9-23

[10]
Apriori algorithm based prediction of students' mental health risks in the context of artificial intelligence.

Front Public Health. 2025-2-12

引用本文的文献

[1]
Exploring the experiences and perceptions of nursing students in utilizing artificial intelligence: a descriptive phenomenological study.

BMC Nurs. 2025-7-1

本文引用的文献

[1]
Machine learning based suicide prediction and development of suicide vulnerability index for US counties.

Npj Ment Health Res. 2022-6-1

[2]
Suicide risk detection using artificial intelligence: the promise of creating a benchmark dataset for research on the detection of suicide risk.

Front Psychiatry. 2023-7-24

[3]
Deep Learning in Diverse Intelligent Sensor Based Systems.

Sensors (Basel). 2022-12-21

[4]
Suicidal behaviour prediction models using machine learning techniques: A systematic review.

Artif Intell Med. 2022-10

[5]
Use of Artificial Intelligence-Based Strategies for Assessing Suicidal Behavior and Mental Illness: A Literature Review.

Cureus. 2022-7-25

[6]
Student Suicide Linked to NEET Examination in India: A Media Report Analysis Study.

Indian J Psychol Med. 2021-3

[7]
Meta-analysis of the strength of exploratory suicide prediction models; from clinicians to computers.

BJPsych Open. 2021-1-7

[8]
Precision Medicine, AI, and the Future of Personalized Health Care.

Clin Transl Sci. 2021-1

[9]
Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations.

Int J Environ Res Public Health. 2020-8-15

[10]
Prediction models for high risk of suicide in Korean adolescents using machine learning techniques.

PLoS One. 2019-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索