Zholobak Nadiia M, Dubova Iryna V, Deineko Anastasiia, Kalinovych Viacheslav, Nováková Jaroslava, Matolínová Iva, Prince Kevin C, Skála Tomáš, Shcherbakov Alexander B, Tsud Nataliya
Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine Zabolotny Street 154 Kyiv 03680 Ukraine
Kyiv National University of Technologies and Design Mala Shyianovska Street 2 Kyiv 01011 Ukraine.
Nanoscale Adv. 2025 Jan 17;7(6):1686-1697. doi: 10.1039/d4na00857j. eCollection 2025 Mar 11.
Cerium oxide nanoparticles (CeNPs) represent a highly promising material for a number of chemical and biological applications involving oxidation-reduction processes. However, the impact of synthesis conditions, as well as the incorporation of synergistic agents of a different catalytic nature, on the antioxidant or prooxidant properties of CeNPs remains a subject of ongoing investigation. In this study, non-stoichiometric CeNPs (∼10% Ce) stabilized by polyvinylpyrrolidone (PVP) were synthesized through the thermal autoxidative decomposition of cerium(iii) nitrate in a high-boiling glycol. A novel approach for the synthesis of CeNPs in the absence of additives (PVP-CeNPs) and with platinum (PVP-CeNPs-Pt), followed by the formation of platinum nanoparticles (PVP-PtNPs), was employed in a stepwise one-pot process. In chemical tests, the PVP-CeNPs-Pt nanocomposite exhibited enhanced peroxidase-mimicking activity and accelerated the Fenton-type reaction of dye decolorization. Nevertheless, it was found to have the ability to reduce adrenaline autoxidation the superoxide dismutase-mimicking pathway. studies demonstrated that PVP-CeNPs and PVP-CeNPs-Pt enhanced HO-induced oxytosis while restoring cellular metabolic activity inhibited by the Fenton-like pathway of cellular apoptosis (ferroptosis) initiated by sulfasalazine. The authors suggest that the oxidoreductase activity of CeNP-based systems in the chemical tests and in biological processes may be caused by different mechanisms, which are discussed.
氧化铈纳米颗粒(CeNPs)是一种极具前景的材料,可用于许多涉及氧化还原过程的化学和生物应用。然而,合成条件以及不同催化性质的协同剂的加入对CeNPs抗氧化或促氧化性质的影响仍是一个正在研究的课题。在本研究中,通过硝酸铈(iii)在高沸点二醇中的热自氧化分解,合成了由聚乙烯吡咯烷酮(PVP)稳定的非化学计量CeNPs(约10%Ce)。一种在无添加剂(PVP-CeNPs)和有铂(PVP-CeNPs-Pt)的情况下合成CeNPs,随后形成铂纳米颗粒(PVP-PtNPs)的新方法,被用于逐步一锅法工艺中。在化学测试中,PVP-CeNPs-Pt纳米复合材料表现出增强的过氧化物酶模拟活性,并加速了染料脱色的芬顿型反应。然而,发现它有能力通过模拟超氧化物歧化酶途径减少肾上腺素自氧化。研究表明,PVP-CeNPs和PVP-CeNPs-Pt增强了HO诱导的氧化作用,同时恢复了由柳氮磺胺吡啶引发的细胞凋亡(铁死亡)的类芬顿途径抑制的细胞代谢活性。作者认为,基于CeNP的系统在化学测试和生物过程中的氧化还原酶活性可能由不同机制引起,并对此进行了讨论。