Martin Andrew, Thuo Martin
Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC. 27695., USA.
Center for Complex Particle Systems, North Carolina State University, 911 Partners Way, Raleigh, NC. 27695., USA.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202423536. doi: 10.1002/anie.202423536. Epub 2025 Feb 10.
Prediction of a liquidus state with lower entropy than the corresponding solid at Kauzmann temperature (T), and associated entropy catastrophe/paradox, remains an enigma. Despite efforts to resolve this paradox for nearly 80 years, no unifying resolution has been reported. Potential resolutions to the Kauzmann paradox rely on an ideal glass transition, however, this limits the interpretation of T as an equilibrium critical point rather than an instability. Focusing on entropy, statistical mechanics and non-equilibrium dynamics becomes a key tenet in resolving this paradox. Expansion in phase space beyond 2D and consideration of T as a non-equilibrium critical point is necessary to understand the extent of liquid relaxation beyond T. In this review, we provide an entropic perspective of the relaxation behavior of supercooled liquids, associated expanded phase diagram, and the potential resolution to the Kauzmann paradox. This work integrates the historical evolution of our understanding of entropy/thermodynamics with modern interpretation of quantum states through renormalization group and thermodynamic speed limits.
在考兹曼温度(T)下预测液相线状态的熵低于相应固相的熵,以及相关的熵灾变/悖论,仍然是一个谜。尽管近80年来人们一直在努力解决这个悖论,但尚未有统一的解决方案被报道。考兹曼悖论的潜在解决方案依赖于理想的玻璃化转变,然而,这将T的解释限制为一个平衡临界点而非不稳定性。聚焦于熵,统计力学和非平衡动力学成为解决这个悖论的关键原则。超越二维的相空间扩展以及将T视为非平衡临界点对于理解T之上液体弛豫的程度是必要的。在这篇综述中,我们提供了过冷液体弛豫行为的熵视角、相关的扩展相图以及考兹曼悖论的潜在解决方案。这项工作将我们对熵/热力学理解的历史演变与通过重整化群和热力学速度极限对量子态的现代解释结合起来。