Park Minju, Ju Huiyeong, Oh Joohee, Park Kwangmin, Lim Hyunseob, Yoon Seok Min, Song Intek
Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea.
Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
Nat Commun. 2025 Feb 3;16(1):1316. doi: 10.1038/s41467-025-56541-2.
The fundamental understanding of coupled proton-electron transport in mixed protonic-electronic conductors (MPECs) remains unexplored in materials science, despite its potential significance within the broader context of mixed ionic-electronic conductors (MIECs) and the possibility of controlled diffusion of protons using hydrogen-bond networks. To address these limitations, we present a hydrogen-bonded coordination polymer Ni-BAND ({Ni(bpy)(HO)(DMF)·2DMF}), which demonstrates high mixed protonic-electronic conductivity at room temperature. Through detailed analysis, we unravel the coupled transport mechanism, offering insights for the rational design of high-performance MPECs. We demonstrate the practical implications of this mechanism by examining the humidity-dependent synaptic plasticity of Ni-BAND, showcasing how MPECs can expand into traditional MIEC applications while leveraging their unique proton-mediated advantages.
尽管在混合离子-电子导体(MIECs)的更广泛背景下,质子-电子耦合传输在混合质子-电子导体(MPECs)中具有潜在意义,并且利用氢键网络实现质子可控扩散也具有可能性,但材料科学领域对MPECs中质子-电子耦合传输的基本理解仍未得到探索。为了解决这些局限性,我们提出了一种氢键配位聚合物Ni-BAND({Ni(bpy)(HO)(DMF)·2DMF}),它在室温下表现出高的混合质子-电子传导率。通过详细分析,我们揭示了耦合传输机制,为高性能MPECs的合理设计提供了见解。我们通过研究Ni-BAND的湿度依赖性突触可塑性,展示了这种机制的实际应用,展示了MPECs如何在利用其独特的质子介导优势的同时,扩展到传统的MIEC应用中。