Yang Ying, Xu Ke, Yang Bin, Hou Xu, Dou Zhanming, Li Yuhong, Zheng Zihao, Luo Gengguang, Luo Nengneng, Ge Guanglong, Zhai Jiwei, Fan Yuanyuan, Wang Jing, Yang Haoming, Zhang Yao, Wang Jing, Wang Changyuan, Jiang Shenglin, Li Kanghua, Guo Jinming, Huang Houbing, Zhang Guangzu
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, China.
Advanced Research Institute of Multidisciplinary Science, and School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China.
Nat Commun. 2025 Feb 3;16(1):1300. doi: 10.1038/s41467-025-56605-3.
Dielectric capacitors with high energy storage performance are highly desired for advanced power electronic devices and systems. Even though strenuous efforts have been dedicated to closing the gap of energy storage density between the dielectric capacitors and the electrochemical capacitors/batteries, a single-minded pursuit of high energy density without a near-zero energy loss for ultrahigh energy efficiency as the grantee is in vain. Herein, for the purpose of decoupling the inherent conflicts between high polarization and low electric hysteresis (loss), and achieving high energy storage density and efficiency simultaneously in multilayer ceramic capacitors (MLCCs), we propose an interlaminar strain engineering strategy to modulate the domain structure and manipulate the polarization behavior of the dielectric mediums. With a heterogeneous layered structure consisting of different antiferroelectric ceramics [(PbBaLa)(ZrSnTi)O/(PbBaLa)(ZrSn)O/(PbCaLa)(ZrSn)O], our MLCC exhibits a giant recoverable energy density of 22.0 J cm with an ultrahigh energy efficiency of 96.1%. Combined with the favorable temperature and frequency stabilities and the high antifatigue property, this work provides a strain engineering paradigm for designing MLCCs for high-power energy storage and conversion systems.
先进的电力电子设备和系统迫切需要具有高储能性能的介电电容器。尽管人们付出了巨大努力来缩小介电电容器与电化学电容器/电池之间的储能密度差距,但如果一味追求高能量密度而不保证近乎零的能量损失以实现超高能量效率,那将是徒劳的。在此,为了解耦高极化与低电滞(损耗)之间的内在冲突,并在多层陶瓷电容器(MLCC)中同时实现高储能密度和效率,我们提出了一种层间应变工程策略,以调节畴结构并控制介电介质的极化行为。我们的MLCC具有由不同反铁电陶瓷[(PbBaLa)(ZrSnTi)O/(PbBaLa)(ZrSn)O/(PbCaLa)(ZrSn)O]组成的异质层状结构,展现出22.0 J/cm³的巨大可恢复能量密度和96.1%的超高能量效率。结合良好的温度和频率稳定性以及高抗疲劳性能,这项工作为设计用于高功率储能和转换系统的MLCC提供了一种应变工程范例。