School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Nat Commun. 2023 Mar 1;14(1):1166. doi: 10.1038/s41467-023-36919-w.
Dielectric capacitors with high energy storage performance are highly desired for next-generation advanced high/pulsed power capacitors that demand miniaturization and integration. However, the poor energy-storage density that results from the low breakdown strength, has been the major challenge for practical applications of dielectric capacitors. Herein, we propose a heterovalent-doping-enabled atom-displacement fluctuation strategy for the design of low-atom-displacements regions in the antiferroelectric matrix to achieve the increase in breakdown strength and enhancement of the energy-storage density for AgNbO-based multilayer capacitors. An ultrahigh breakdown strength ~1450 kV·cm is realized in the SmAgNbTaO multilayer capacitors, especially with an ultrahigh U ~14 J·cm, excellent η ~ 85% and P ~ 102.84 MW·cm, manifesting a breakthrough in the comprehensive energy storage performance for lead-free antiferroelectric capacitors. This work offers a good paradigm for improving the energy storage properties of antiferroelectric multilayer capacitors to meet the demanding requirements of advanced energy storage applications.
具有高储能性能的介电电容器是下一代先进的高/脉冲功率电容器所急需的,因为这些电容器需要小型化和集成化。然而,低击穿强度导致的储能密度差一直是介电电容器实际应用的主要挑战。在此,我们提出了一种杂价掺杂实现的原子位移涨落策略,用于设计反铁电基体中的低原子位移区域,从而提高击穿强度,并提高基于 AgNbO 的多层电容器的储能密度。在 SmAgNbTaO 多层电容器中实现了超高击穿强度1450 kV·cm,特别是具有超高 U14 J·cm、优异的 η85%和 P102.84 MW·cm,在无铅反铁电电容器的综合储能性能方面取得了突破。这项工作为改善反铁电多层电容器的储能性能提供了一个很好的范例,以满足先进储能应用的苛刻要求。