Suppr超能文献

使用二维描述符预测电催化尿素合成

Predicting electrocatalytic urea synthesis using a two-dimensional descriptor.

作者信息

Wuttke Amy, Bagger Alexander

机构信息

Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.

出版信息

Commun Chem. 2025 Feb 3;8(1):30. doi: 10.1038/s42004-025-01424-2.

Abstract

Electrochemical synthesis routes powered by renewable electricity can provide sustainable chemical commodities by replacing conventional fossil-based processes. Increasing research focuses on value-added chemicals like the indispensable fertilizer urea, which also constitutes a study case for electrochemical CN-coupling. To guide the identification of highly selective catalysts, we aim to provide new insight by analysing existing experimental data on the selectivity of transition metal catalysts towards electrochemically synthesized urea. Firstly, we project high dimensional experimental data using principal component analysis (PCA) to lower dimensions, and thereby confirm that urea selectivity is correlated with the selectivity towards CO and NH. Furthermore, we identified the most suitable two-dimensional descriptors for selectivity prediction out of various adsorption energies calculated using density functional theory (DFT). We suggest that the adsorption energies of *H and *O on transition metal slabs predict the selectivity towards urea in the co-reduction of CO and nitrite ( ).

摘要

由可再生电力驱动的电化学合成路线可以通过取代传统的化石基工艺来提供可持续的化学产品。越来越多的研究聚焦于增值化学品,如不可或缺的肥料尿素,它也是电化学碳氮偶联的一个研究实例。为了指导高选择性催化剂的筛选,我们旨在通过分析现有关于过渡金属催化剂对电化学合成尿素选择性的实验数据来提供新的见解。首先,我们使用主成分分析(PCA)将高维实验数据投影到低维度,从而证实尿素选择性与对一氧化碳和氨的选择性相关。此外,我们从使用密度泛函理论(DFT)计算的各种吸附能中确定了最适合用于选择性预测的二维描述符。我们认为,氢原子和氧原子在过渡金属平板上的吸附能可以预测在一氧化碳和亚硝酸盐共还原过程中对尿素的选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6600/11790836/02af965f791c/42004_2025_1424_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验