Wu Kaichao, Gollo Leonardo L
Brain Networks and Modelling Laboratory and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia.
Commun Biol. 2025 Feb 3;8(1):167. doi: 10.1038/s42003-025-07517-x.
Intrinsic timescales of brain regions exhibit heterogeneity, escalating with hierarchical levels, and are crucial for the temporal integration of external stimuli. Aging, often associated with cognitive decline, involves progressive neuronal and synaptic loss, reshaping brain structure and dynamics. However, the impact of these structural changes on temporal coding in the aging brain remains unclear. We mapped intrinsic timescales and gray matter volume (GMV) using magnetic resonance imaging (MRI) in young and elderly adults. We found shorter intrinsic timescales across multiple large-scale functional networks in the elderly cohort, and a significant positive association between intrinsic timescales and GMV. Additionally, age-related decline in performance on visual discrimination tasks was linked to a reduction in intrinsic timescales in the cuneus. To explain these age-related shifts, we developed an age-dependent spiking neuron network model. In younger subjects, brain regions were near a critical branching regime, while regions in elderly subjects had fewer neurons and synapses, pushing the dynamics toward a subcritical regime. The model accurately reproduced the empirical results, showing longer intrinsic timescales in young adults due to critical slowing down. Our findings reveal how age-related structural brain changes may drive alterations in brain dynamics, offering testable predictions and informing possible interventions targeting cognitive decline.
脑区的固有时间尺度表现出异质性,随层级水平升高而增加,并且对于外部刺激的时间整合至关重要。衰老通常与认知能力下降相关,涉及神经元和突触的逐渐丧失,重塑脑结构和动力学。然而,这些结构变化对衰老大脑中时间编码的影响仍不清楚。我们使用磁共振成像(MRI)对年轻人和老年人的固有时间尺度和灰质体积(GMV)进行了映射。我们发现老年队列中多个大规模功能网络的固有时间尺度较短,并且固有时间尺度与GMV之间存在显著正相关。此外,视觉辨别任务中与年龄相关的表现下降与楔叶固有时间尺度的减少有关。为了解释这些与年龄相关的变化,我们开发了一个年龄依赖性的脉冲神经元网络模型。在年轻受试者中,脑区接近临界分支状态,而老年受试者的脑区神经元和突触较少,使动力学趋向于亚临界状态。该模型准确地再现了实证结果,显示由于临界减慢,年轻人的固有时间尺度更长。我们的研究结果揭示了与年龄相关的脑结构变化如何可能驱动脑动力学的改变,提供了可测试的预测,并为针对认知能力下降的可能干预措施提供了信息。