Sarani Moslem, Jahangiri Katayoun, Karami Manoochehr, Honarvar Mohammadreza
Department of Health in Disasters and Emergencies, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
BMC Infect Dis. 2025 Feb 3;25(1):159. doi: 10.1186/s12879-025-10528-y.
Effective epidemic preparedness is critical for minimizing the health and societal impacts of viral respiratory infections. This study details the development of a data-driven early warning system (EWS) designed to improve outbreak detection and response utilizing the data integration and visualization capabilities of Microsoft Power BI.
This research utilized a structured three-phase approach to design a respiratory infections (RIs) management dashboard. Phase 1, focused on identifying critical variables through literature reviews and expert interviews. In Phase 2, Microsoft Power BI was employed for dashboard development, integrating data from diverse sources. Phase 3 involved usability testing with health professionals who evaluated navigation, data accuracy, decision-support features, providing feedback to enhance visualization clarity and filtering capabilities.
Key data categories include individual-level variables, such as age, symptoms, and vaccination records, alongside population-level metrics like infection rates and regional vaccination coverage enabling functionalities such as identifying high-risk individuals, tracking infection dynamics, and optimizing resource allocation. The dashboard, developed using Power BI visualizes epidemiological trends, intervention outcomes, and resource utilization. A relational database schema ensures efficient data retrieval, facilitating comprehensive analysis.
The prototype EWS represents a scalable and integrative framework aimed at enhancing public health applications, particularly in the context of respiratory infections. By incorporating data from diverse health sectors, the system offers decision-makers access to critical epidemiological indicators, supporting early outbreak detection and improved epidemic management. Its potential to unify health institutions underscores its value in fostering a more cohesive and effective approach to epidemic preparedness. Nevertheless, while the system demonstrates significant promise, further evaluation in real-world settings is essential to determine its practical impact on public health outcomes and its ability to mitigate health crises.
有效的疫情防范对于将病毒性呼吸道感染对健康和社会的影响降至最低至关重要。本研究详细介绍了一个数据驱动的早期预警系统(EWS)的开发过程,该系统旨在利用Microsoft Power BI的数据集成和可视化功能来改善疫情检测和应对。
本研究采用结构化的三阶段方法来设计一个呼吸道感染(RIs)管理仪表板。第1阶段,通过文献综述和专家访谈确定关键变量。在第2阶段,使用Microsoft Power BI进行仪表板开发,整合来自不同来源的数据。第3阶段涉及与卫生专业人员进行可用性测试,他们评估了导航、数据准确性、决策支持功能,并提供反馈以提高可视化清晰度和筛选功能。
关键数据类别包括个人层面的变量,如年龄、症状和疫苗接种记录,以及人群层面的指标,如感染率和区域疫苗接种覆盖率,从而实现识别高危个体、跟踪感染动态和优化资源分配等功能。使用Power BI开发的仪表板可直观显示流行病学趋势、干预结果和资源利用情况。关系数据库模式确保了高效的数据检索,便于进行全面分析。
EWS原型代表了一个可扩展的综合框架,旨在加强公共卫生应用,特别是在呼吸道感染的背景下。通过整合来自不同卫生部门的数据,该系统为决策者提供了关键的流行病学指标,支持早期疫情检测和改善疫情管理。其统一卫生机构的潜力凸显了其在促进更具凝聚力和有效性的疫情防范方法方面的价值。然而,尽管该系统显示出巨大的潜力,但在实际环境中进行进一步评估对于确定其对公共卫生结果的实际影响及其缓解健康危机的能力至关重要。