Mikhail Andrew I, Ng Sean Y, Xhuti Donald, Lesinski Magda A, Chhor Jennifer, Deguise Marc-Olivier, De Repentigny Yves, Nederveen Joshua P, Kothary Rashmi, Tarnopolsky Mark A, Ljubicic Vladimir
Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada.
J Cachexia Sarcopenia Muscle. 2025 Feb;16(1):e13701. doi: 10.1002/jcsm.13701.
Spinal muscular atrophy (SMA) is a health- and life-limiting neuromuscular disorder. Although varying degrees of mitochondrial abnormalities have been documented in SMA skeletal muscle, the influence of disease progression on pathways that govern organelle turnover and dynamics are poorly understood. Thus, the purpose of this study was to investigate skeletal muscle mitochondria during SMA disease progression and determine the effects of therapeutic modalities on organelle biology.
Smn and Smn severe SMA-like mice were used to investigate mitochondrial turnover and dynamics signalling. Muscles were analysed at postnatal day 9 (P9), P13 or P21 to address pre-symptomatic, early symptomatic and late symptomatic periods of the disorder. Additionally, we utilized an acute dose of exercise and urolithin A (UA) to stimulate organelle remodelling in skeletal muscle of SMA mice in vivo and in SMA patient-derived myotubes in vitro, respectively.
Smn and Smn mice demonstrated similar levels of muscle mitochondrial oxidative phosphorylation (OxPhos) proteins throughout disease progression. In contrast, at P21 the mRNA levels of upstream factors important for the transcription of mitochondrial genes encoded by the nuclear and mitochondrial DNA, including nuclear respiratory factor 2, sirtuin 1, mitochondrial transcription factor A and tumour protein 53, were upregulated (+31%-195%, p < 0.05) in Smn mice relative to Smn. Early and late symptomatic skeletal muscle from SMA-like mice showed greater autophagosome formation as denoted by more phosphorylated autophagy related 16-like 1 (p-ATG16L1) puncta (+60%-80%, p < 0.05), along with a build-up of molecules indicative of damaged mitochondria such as BCL2 interacting protein 3, Parkin and PTEN-induced kinase 1 (+100%-195%, p < 0.05). Furthermore, we observed a fragmented mitochondrial phenotype at P21 that was concomitant with abnormal splicing of Optic atrophy 1 transcripts (-53%, p < 0.05). A single dose of exercise augmented the expression of citrate synthase (+43%, p < 0.05) and corrected the over-assembly of autophagosomes (-64%, p < 0.05). In patient muscle cells, UA treatment stimulated autophagic flux, increased the expression of OxPhos proteins (+15%-47%, p < 0.05) and improved maximal oxygen consumption (+84%, p < 0.05).
Abnormal skeletal muscle mitochondrial turnover and dynamics are associated with disease progression in Smn mice despite compensatory elevations in upstream factors important for organelle synthesis and recycling. Exercise and UA enhance mitochondrial health in skeletal muscle, which indicates that lifestyle-based and pharmacological interventions may be effective countermeasures targeting the organelle for therapeutic remodelling in SMA.
脊髓性肌萎缩症(SMA)是一种严重影响健康和生命的神经肌肉疾病。尽管已有文献报道SMA骨骼肌中存在不同程度的线粒体异常,但疾病进展对细胞器更新和动态调节通路的影响仍知之甚少。因此,本研究旨在探究SMA疾病进展过程中的骨骼肌线粒体,并确定治疗方式对细胞器生物学的影响。
利用Smn和Smn严重SMA样小鼠来研究线粒体更新和动态信号传导。在出生后第9天(P9)、P13或P21对肌肉进行分析,以研究该疾病的症状前、早期症状和晚期症状阶段。此外,我们分别使用急性剂量的运动和尿石素A(UA)来刺激SMA小鼠体内骨骼肌和体外SMA患者来源的肌管中的细胞器重塑。
在整个疾病进展过程中,Smn和Smn小鼠的肌肉线粒体氧化磷酸化(OxPhos)蛋白水平相似。相比之下,在P21时,相对于Smn小鼠,Smn小鼠中对由核DNA和线粒体DNA编码的线粒体基因转录重要的上游因子的mRNA水平上调(+31%-195%,p<0.05),这些因子包括核呼吸因子2、沉默调节蛋白1、线粒体转录因子A和肿瘤蛋白53。SMA样小鼠的早期和晚期症状性骨骼肌显示出自噬体形成增加,表现为更多的磷酸化自噬相关16样蛋白1(p-ATG16L1)斑点(+60%-80%,p<0.05),同时积累了指示线粒体受损的分子,如BCL2相互作用蛋白3、帕金蛋白和PTEN诱导激酶1(+100%-195%,p<0.05)。此外,我们在P21时观察到线粒体碎片化表型,同时伴有视神经萎缩1转录本的异常剪接(-53%,p<0.05)。单次运动剂量增加了柠檬酸合酶的表达(+43%,p<0.05),并纠正了自噬体的过度组装(-64%,p<0.05)。在患者肌肉细胞中,UA处理刺激了自噬流,增加了OxPhos蛋白的表达(+15%-47%,p<0.05),并改善了最大耗氧量(+84%,p<0.05)。
尽管对细胞器合成和循环重要的上游因子有代偿性升高,但异常的骨骼肌线粒体更新和动态与Smn小鼠的疾病进展相关。运动和UA可改善骨骼肌中的线粒体健康,这表明基于生活方式的干预和药物干预可能是针对SMA细胞器进行治疗性重塑的有效对策。