Suppr超能文献

用于预测药物浓度的机器学习:应用与挑战

Machine Learning for Prediction of Drug Concentrations: Application and Challenges.

作者信息

Huang Shuqi, Xu Qihan, Yang Guoping, Ding Junjie, Pei Qi

机构信息

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.

Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.

出版信息

Clin Pharmacol Ther. 2025 May;117(5):1236-1247. doi: 10.1002/cpt.3577. Epub 2025 Feb 3.

Abstract

With the advancements in algorithms and increased accessibility of multi-source data, machine learning in pharmacokinetics is gaining interest. This review summarizes studies on machine learning-based pharmacokinetics analysis up to September 2024, identified from the PubMed and IEEE Xplore databases. The main focus of this review is on the use of machine learning in predicting drug concentration. This review provides a comprehensive summary of the advances in the machine learning algorithms for pharmacokinetics analysis. Specifically, we describe the common practices in data preprocessing, the application scenarios of various algorithms, and the critical challenges that require attention. Most machine learning models show comparable performance to those of population pharmacokinetics models. Tree-based algorithms and neural networks have the most applications. Furthermore, the use of ensemble modeling techniques can improve the accuracy of these models' predictions of drug concentrations, especially the ensembles of machine learning and pharmacometrics.

摘要

随着算法的进步以及多源数据获取的增加,药物动力学中的机器学习正受到越来越多的关注。本综述总结了截至2024年9月从PubMed和IEEE Xplore数据库中识别出的基于机器学习的药物动力学分析研究。本综述的主要重点是机器学习在预测药物浓度方面的应用。本综述全面总结了用于药物动力学分析的机器学习算法的进展。具体而言,我们描述了数据预处理的常见做法、各种算法的应用场景以及需要关注的关键挑战。大多数机器学习模型的表现与群体药物动力学模型相当。基于树的算法和神经网络的应用最为广泛。此外,使用集成建模技术可以提高这些模型预测药物浓度的准确性,特别是机器学习和药物计量学的集成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验