Suppr超能文献

癫痫患儿丙戊酸的剂量预测:群体药代动力学模型还是机器学习模型?

Dosing prediction of valproic acid in pediatric patients with epilepsy: population pharmacokinetic model or machine learning model?

作者信息

Chen Jingcheng, Wang Jiacheng, Li Kai, Wu Yujie, Wang Ziqian, Guo Jin, Zhao Zhigang, Feng Weixing, Mei Shenghui

机构信息

Department of Pharmacy, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Beijing, 100070, People's Republic of China.

Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.

出版信息

Eur J Clin Pharmacol. 2025 Jul 5. doi: 10.1007/s00228-025-03874-y.

Abstract

PURPOSE

This study develops and compares population pharmacokinetics (PopPK) models and machine learning methods, including neural networks, to predict steady-state trough concentrations in pediatric patients and provide improved dosing recommendations.

METHODS

Valproic acid concentration data were collected from 490 pediatric epilepsy patients treated at Beijing Tiantan Hospital and Beijing Children's Hospital. We developed predictive models employing PopPK, maximum a posteriori Bayesian (MAPB), multiple linear regression (MLR), machine learning (including Random Forest, XGBoost, and LightGBM for feature selection), and neural network techniques. The predictive accuracy of these models was then rigorously tested through external validation using the independent dataset from Beijing Children's Hospital. Upon identifying the optimal model, dosing regimens for various clinical scenarios were derived and presented.

RESULTS

Under the same dataset modeling conditions, the original PopPK models showed limited predictive performance. Transforming these models into multiple linear regression enhanced prediction accuracy. Moreover, when prior data was available, the MAPB method significantly boosted prediction performance. Machine learning and neural networks showed higher accuracy, with neural networks achieving an F value above 80%.

CONCLUSION

This study explored model optimization strategies and compared machine learning and neural network models alongside traditional PopPK. It introduced an advanced method to predict drug concentrations and stable trough dosing regimens in pediatric epilepsy treatment, reducing the need for frequent, invasive blood tests in TDM. These improvements enhanced the efficacy and safety of valproic acid therapy for children, supporting the development of personalized treatment plans.

摘要

目的

本研究开发并比较群体药代动力学(PopPK)模型和机器学习方法,包括神经网络,以预测儿科患者的稳态谷浓度并提供改进的给药建议。

方法

收集了在北京天坛医院和北京儿童医院接受治疗的490例小儿癫痫患者的丙戊酸浓度数据。我们开发了采用PopPK、最大后验贝叶斯(MAPB)、多元线性回归(MLR)、机器学习(包括用于特征选择的随机森林、XGBoost和LightGBM)和神经网络技术的预测模型。然后使用来自北京儿童医院的独立数据集通过外部验证对这些模型的预测准确性进行了严格测试。在确定最佳模型后,得出并展示了各种临床场景的给药方案。

结果

在相同的数据集建模条件下,原始的PopPK模型显示出有限的预测性能。将这些模型转换为多元线性回归提高了预测准确性。此外,当有先验数据可用时,MAPB方法显著提高了预测性能。机器学习和神经网络显示出更高的准确性,神经网络的F值达到80%以上。

结论

本研究探索了模型优化策略,并将机器学习和神经网络模型与传统的PopPK进行了比较。它引入了一种先进的方法来预测小儿癫痫治疗中的药物浓度和稳定的谷给药方案,减少了治疗药物监测中频繁进行侵入性血液检查的必要性。这些改进提高了丙戊酸治疗儿童的疗效和安全性,支持个性化治疗方案的制定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验