Wilson Martin
Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.
Magn Reson Med. 2025 Jun;93(6):2287-2296. doi: 10.1002/mrm.30462. Epub 2025 Feb 4.
Accurate analysis of metabolite levels from H MRS data is a significant challenge, typically requiring the estimation of approximately 100 parameters from a single spectrum. Signal overlap, spectral noise, and common artifacts further complicate the analysis, leading to instability and reports of poor agreement between different analysis approaches. One inconsistently used method to improve analysis stability is known as regularization, where poorly determined parameters are partially constrained to take a predefined value. In this study, we examine how regularization of frequency and linewidth parameters influences analysis accuracy.
The accuracy of three MRS analysis methods was compared: (1) ABfit, (2) ABfit-reg, and (3) LCModel, where ABfit-reg is a modified version of ABfit incorporating regularization. Accuracy was assessed on synthetic MRS data generated with random variability in the frequency shift and linewidth parameters applied to each basis signal. Spectra ( ) were generated across a range of SNR values (10, 30, 60, 100) to evaluate the impact of variable data quality.
Comparison between ABfit and ABfit-reg demonstrates a statistically significant (p < 0.0005) improvement in accuracy associated with regularization for each SNR regime. An approximately 10% reduction in the mean squared metabolite errors was found for ABfit-reg compared to LCModel for SNR >10 (p < 0.0005). Furthermore, Bland-Altman analysis shows that incorporating regularization into ABfit enhances its agreement with LCModel.
Regularization is beneficial for MRS fitting and accurate characterization of the frequency and linewidth variability in vivo may yield further improvements.
从氢磁共振波谱(1H MRS)数据中准确分析代谢物水平是一项重大挑战,通常需要从单个谱图中估计大约100个参数。信号重叠、谱噪声和常见伪影使分析进一步复杂化,导致分析不稳定,并且不同分析方法之间的一致性较差。一种使用不一致的提高分析稳定性的方法称为正则化,即对确定不佳的参数进行部分约束,使其取预定义值。在本研究中,我们研究了频率和线宽参数的正则化如何影响分析准确性。
比较了三种磁共振波谱分析方法的准确性:(1)ABfit,(2)ABfit-reg,以及(3)LCModel,其中ABfit-reg是纳入了正则化的ABfit的改进版本。对合成的磁共振波谱数据进行准确性评估,这些数据在应用于每个基础信号的频移和线宽参数中具有随机变化。在一系列信噪比(SNR)值(10、30、60、100)下生成谱图( ),以评估可变数据质量的影响。
ABfit和ABfit-reg之间的比较表明,在每个信噪比范围内,与正则化相关的准确性有统计学显著提高(p < 0.0005)。对于SNR > 10的情况,与LCModel相比,ABfit-reg的代谢物均方误差平均降低了约10%(p < 0.0005)。此外,Bland-Altman分析表明,将正则化纳入ABfit可增强其与LCModel的一致性。
正则化有利于磁共振波谱拟合,准确表征体内频率和线宽变化可能会带来进一步的改善。