Suppr超能文献

不同线性组合建模算法在短 TE 质子谱中的比较。

Comparison of different linear-combination modeling algorithms for short-TE proton spectra.

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

出版信息

NMR Biomed. 2021 Apr;34(4):e4482. doi: 10.1002/nbm.4482. Epub 2021 Feb 2.

Abstract

Short-TE proton MRS is used to study metabolism in the human brain. Common analysis methods model the data as a linear combination of metabolite basis spectra. This large-scale multi-site study compares the levels of the four major metabolite complexes in short-TE spectra estimated by three linear-combination modeling (LCM) algorithms. 277 medial parietal lobe short-TE PRESS spectra (TE = 35 ms) from a recent 3 T multi-site study were preprocessed with the Osprey software. The resulting spectra were modeled with Osprey, Tarquin and LCModel, using the same three vendor-specific basis sets (GE, Philips and Siemens) for each algorithm. Levels of total N-acetylaspartate (tNAA), total choline (tCho), myo-inositol (mI) and glutamate + glutamine (Glx) were quantified with respect to total creatine (tCr). Group means and coefficient of variations of metabolite estimates agreed well for tNAA and tCho across vendors and algorithms, but substantially less so for Glx and mI, with mI systematically estimated as lower by Tarquin. The cohort mean coefficient of determination for all pairs of LCM algorithms across all datasets and metabolites was = 0.39, indicating generally only moderate agreement of individual metabolite estimates between algorithms. There was a significant correlation between local baseline amplitude and metabolite estimates (cohort mean = 0.10). While mean estimates of major metabolite complexes broadly agree between linear-combination modeling algorithms at group level, correlations between algorithms are only weak-to-moderate, despite standardized preprocessing, a large sample of young, healthy and cooperative subjects, and high spectral quality. These findings raise concerns about the comparability of MRS studies, which typically use one LCM software and much smaller sample sizes.

摘要

短 TE 质子 MRS 用于研究人脑代谢。常见的分析方法将数据建模为代谢物基础谱的线性组合。这项大规模多中心研究比较了三种线性组合建模 (LCM) 算法估计的短 TE 谱中四个主要代谢物复合物的水平。最近一项 3T 多中心研究的 277 个内侧顶叶短 TE PRESS 谱 (TE = 35ms) 用 Osprey 软件进行了预处理。用 Osprey、Tarquin 和 LCModel 对所得谱进行建模,每种算法都使用相同的三个供应商特定的基础集 (GE、Philips 和 Siemens)。使用总肌醇 (mI)、谷氨酸 +谷氨酰胺 (Glx) 和总肌酸 (tCr) 对总 N-乙酰天冬氨酸 (tNAA) 和总胆碱 (tCho) 的水平进行定量。在供应商和算法之间,tNAA 和 tCho 的组均值和代谢物估计的变异系数吻合良好,但 Glx 和 mI 的情况则相差较大,Tarquin 系统地估计 mI 较低。所有数据集和代谢物中所有 LCM 算法对的决定系数的队列平均值为 = 0.39,表明算法之间个体代谢物估计值的一致性通常仅为中等。在基线幅度和代谢物估计之间存在显著相关性 (队列平均值 = 0.10)。尽管进行了标准化预处理、样本量大、对象年轻健康且配合良好,以及光谱质量高,但在组水平上,线性组合建模算法之间主要代谢物复合物的平均估计值大致一致,但算法之间的相关性仍然较弱至中等。这些发现令人关注 MRS 研究的可比性,因为 MRS 研究通常使用一种 LCM 软件和更小的样本量。

相似文献

1
Comparison of different linear-combination modeling algorithms for short-TE proton spectra.
NMR Biomed. 2021 Apr;34(4):e4482. doi: 10.1002/nbm.4482. Epub 2021 Feb 2.
3
Reproducibility and reliability of short-TE whole-brain MR spectroscopic imaging of human brain at 3T.
Magn Reson Med. 2015 Mar;73(3):921-8. doi: 10.1002/mrm.25208. Epub 2014 Mar 26.
4
5
Neurometabolic timecourse of healthy aging.
Neuroimage. 2022 Dec 1;264:119740. doi: 10.1016/j.neuroimage.2022.119740. Epub 2022 Nov 8.
6
Multi-voxel magnetic resonance spectroscopy of cerebral metabolites in healthy adults at 3 Tesla.
Acad Radiol. 2009 Dec;16(12):1493-501. doi: 10.1016/j.acra.2009.07.025. Epub 2009 Sep 24.
10
Experimental Basis Sets of Quantification of Brain H-Magnetic Resonance Spectroscopy at 3.0 T.
Metabolites. 2023 Mar 1;13(3):368. doi: 10.3390/metabo13030368.

引用本文的文献

1
MRS-Sim: Open-Source Framework for Simulating In Vivo-like Magnetic Resonance Spectra.
bioRxiv. 2025 Apr 8:2024.12.20.629645. doi: 10.1101/2024.12.20.629645.
2
Chemical shift and relaxation regularization improve the accuracy of H MR spectroscopy analysis.
Magn Reson Med. 2025 Jun;93(6):2287-2296. doi: 10.1002/mrm.30462. Epub 2025 Feb 4.
6
Metabolite T relaxation times decrease across the adult lifespan in a large multi-site cohort.
Magn Reson Med. 2025 Mar;93(3):916-929. doi: 10.1002/mrm.30340. Epub 2024 Oct 24.
7
Validity and specificity of BOLD effects and their correction in H-fMRS.
Front Neurosci. 2024 Sep 9;18:1433468. doi: 10.3389/fnins.2024.1433468. eCollection 2024.
8
A data-driven algorithm to determine H-MRS basis set composition.
bioRxiv. 2025 Feb 23:2024.09.11.612503. doi: 10.1101/2024.09.11.612503.
9
Model-based frequency-and-phase correction of H MRS data with 2D linear-combination modeling.
Magn Reson Med. 2024 Nov;92(5):2222-2236. doi: 10.1002/mrm.30209. Epub 2024 Jul 10.
10
Metabolite T relaxation times decrease across the adult lifespan in a large multi-site cohort.
bioRxiv. 2024 Jun 24:2024.06.19.599719. doi: 10.1101/2024.06.19.599719.

本文引用的文献

1
Vespa: Integrated applications for RF pulse design, spectral simulation and MRS data analysis.
Magn Reson Med. 2023 Sep;90(3):823-838. doi: 10.1002/mrm.29686. Epub 2023 May 15.
3
Contribution of macromolecules to brain H MR spectra: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4393. doi: 10.1002/nbm.4393. Epub 2020 Nov 25.
4
Correcting frequency and phase offsets in MRS data using robust spectral registration.
NMR Biomed. 2020 Oct;33(10):e4368. doi: 10.1002/nbm.4368. Epub 2020 Jul 12.
5
Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data.
J Neurosci Methods. 2020 Sep 1;343:108827. doi: 10.1016/j.jneumeth.2020.108827. Epub 2020 Jun 27.
6
Effects of noise and linewidth on in vivo analysis of glutamate at 3 T.
J Magn Reson. 2020 May;314:106732. doi: 10.1016/j.jmr.2020.106732. Epub 2020 Apr 13.
9
Comparison of Multivendor Single-Voxel MR Spectroscopy Data Acquired in Healthy Brain at 26 Sites.
Radiology. 2020 Apr;295(1):171-180. doi: 10.1148/radiol.2020191037. Epub 2020 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验