Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.
NMR Biomed. 2021 Apr;34(4):e4482. doi: 10.1002/nbm.4482. Epub 2021 Feb 2.
Short-TE proton MRS is used to study metabolism in the human brain. Common analysis methods model the data as a linear combination of metabolite basis spectra. This large-scale multi-site study compares the levels of the four major metabolite complexes in short-TE spectra estimated by three linear-combination modeling (LCM) algorithms. 277 medial parietal lobe short-TE PRESS spectra (TE = 35 ms) from a recent 3 T multi-site study were preprocessed with the Osprey software. The resulting spectra were modeled with Osprey, Tarquin and LCModel, using the same three vendor-specific basis sets (GE, Philips and Siemens) for each algorithm. Levels of total N-acetylaspartate (tNAA), total choline (tCho), myo-inositol (mI) and glutamate + glutamine (Glx) were quantified with respect to total creatine (tCr). Group means and coefficient of variations of metabolite estimates agreed well for tNAA and tCho across vendors and algorithms, but substantially less so for Glx and mI, with mI systematically estimated as lower by Tarquin. The cohort mean coefficient of determination for all pairs of LCM algorithms across all datasets and metabolites was = 0.39, indicating generally only moderate agreement of individual metabolite estimates between algorithms. There was a significant correlation between local baseline amplitude and metabolite estimates (cohort mean = 0.10). While mean estimates of major metabolite complexes broadly agree between linear-combination modeling algorithms at group level, correlations between algorithms are only weak-to-moderate, despite standardized preprocessing, a large sample of young, healthy and cooperative subjects, and high spectral quality. These findings raise concerns about the comparability of MRS studies, which typically use one LCM software and much smaller sample sizes.
短 TE 质子 MRS 用于研究人脑代谢。常见的分析方法将数据建模为代谢物基础谱的线性组合。这项大规模多中心研究比较了三种线性组合建模 (LCM) 算法估计的短 TE 谱中四个主要代谢物复合物的水平。最近一项 3T 多中心研究的 277 个内侧顶叶短 TE PRESS 谱 (TE = 35ms) 用 Osprey 软件进行了预处理。用 Osprey、Tarquin 和 LCModel 对所得谱进行建模,每种算法都使用相同的三个供应商特定的基础集 (GE、Philips 和 Siemens)。使用总肌醇 (mI)、谷氨酸 +谷氨酰胺 (Glx) 和总肌酸 (tCr) 对总 N-乙酰天冬氨酸 (tNAA) 和总胆碱 (tCho) 的水平进行定量。在供应商和算法之间,tNAA 和 tCho 的组均值和代谢物估计的变异系数吻合良好,但 Glx 和 mI 的情况则相差较大,Tarquin 系统地估计 mI 较低。所有数据集和代谢物中所有 LCM 算法对的决定系数的队列平均值为 = 0.39,表明算法之间个体代谢物估计值的一致性通常仅为中等。在基线幅度和代谢物估计之间存在显著相关性 (队列平均值 = 0.10)。尽管进行了标准化预处理、样本量大、对象年轻健康且配合良好,以及光谱质量高,但在组水平上,线性组合建模算法之间主要代谢物复合物的平均估计值大致一致,但算法之间的相关性仍然较弱至中等。这些发现令人关注 MRS 研究的可比性,因为 MRS 研究通常使用一种 LCM 软件和更小的样本量。