Suppr超能文献

水牛中与脂质和碳水化合物代谢相关的核编码线粒体基因的组织特异性多样性

Tissue-Specific Diversity of Nuclear-Encoded Mitochondrial Genes Related to Lipid and Carbohydrate Metabolism in Buffalo.

作者信息

Sadeesh E M, Lahamge Madhuri S, Kumari Sweta, Singh Prathiksha

机构信息

Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.

出版信息

Mol Biotechnol. 2025 Feb 4. doi: 10.1007/s12033-025-01386-9.

Abstract

Buffaloes play a crucial role in Asian agriculture, enhancing food security and rural development. Their distinct metabolic needs drive tissue-specific mitochondrial adaptations, regulated by both mitochondrial and nuclear genomes. This study explores how nuclear-encoded mitochondrial genes involved in lipid and carbohydrate metabolism vary across tissues-an area with significant implications for buffalo health, productivity, and human health. We hypothesize that tissue-specific variations in metabolic pathways are reflected in the expression of nuclear-encoded mitochondrial genes, which are tailored to the metabolic needs of each tissue. We utilized high-throughput RNA sequencing (RNA-seq) data to assess the expression of nuclear-encoded mitochondrial genes related to lipid and carbohydrate metabolism across various tissues in healthy female buffaloes aged 3-5 years, including the kidney, heart, brain, and ovary. Differential expression analysis was performed using DESeq2, with significance set at p < 0.05 for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 164 genes exhibited tissue-specific regulation, with the heart and brain, which have higher energy demands, expressing more genes than the kidney and ovary. Notably, the comparison between the kidney and ovary showed the highest number of differentially expressed genes. Interestingly, the kidney up-regulates gluconeogenesis-related genes (e.g., PCK2, PCCA, LDHD), promoting glucose production, while these genes are down-regulated in the ovary. In contrast, the brain up-regulates pyruvate metabolism genes (e.g., PCCA, PDHA1, LDHD), underscoring its reliance on glucose as a primary energy source, while these genes are down-regulated in the ovary. The higher abundance of EHHADH in the brain compared to the ovary further emphasizes the critical role of fatty acid metabolism in brain function, aligned with the brain's high energy demands. Additionally, down-regulation of the StAR gene in both the kidney versus ovary and brain versus ovary comparisons suggests tissue-specific differences in steroid hormone regulation. These findings highlight tissue-specific variations in nuclear-encoded mitochondrial genes related to lipid and carbohydrate metabolism, reflecting adaptations to each tissue's unique metabolic needs. This study lays a foundation for advancing mitochondrial metabolism research in livestock, with significant implications for human health. Insights could inform dietary or therapeutic strategies for metabolic disorders, such as cardiovascular diseases and metabolic syndrome, while also enhancing livestock productivity.

摘要

水牛在亚洲农业中发挥着至关重要的作用,增强了粮食安全和农村发展。它们独特的代谢需求驱动着组织特异性的线粒体适应性变化,这受到线粒体基因组和核基因组的共同调控。本研究探讨了参与脂质和碳水化合物代谢的核编码线粒体基因在不同组织中的差异——这一领域对水牛健康、生产力和人类健康具有重要意义。我们假设代谢途径的组织特异性差异反映在核编码线粒体基因的表达中,这些基因是根据每个组织的代谢需求进行调整的。我们利用高通量RNA测序(RNA-seq)数据评估了3至5岁健康雌性水牛各种组织中与脂质和碳水化合物代谢相关的核编码线粒体基因的表达,这些组织包括肾脏、心脏大脑和卵巢。使用DESeq2进行差异表达分析,将基因本体(GO)和京都基因与基因组百科全书(KEGG)通路分析的显著性设定为p < 0.05。共有164个基因表现出组织特异性调控,心脏和大脑能量需求较高,其表达的基因比肾脏和卵巢更多。值得注意的是,肾脏和卵巢之间的比较显示差异表达基因数量最多。有趣的是,肾脏上调了与糖异生相关的基因(如PCK2、PCCA、LDHD),促进葡萄糖生成,而这些基因在卵巢中下调。相反,大脑上调了丙酮酸代谢基因(如PCCA、PDHA1、LDHD),突出了其对葡萄糖作为主要能量来源的依赖,而这些基因在卵巢中下调。与卵巢相比,大脑中EHHADH的丰度更高,进一步强调了脂肪酸代谢在脑功能中的关键作用,这与大脑的高能量需求相一致。此外,在肾脏与卵巢以及大脑与卵巢的比较中,StAR基因的下调表明类固醇激素调控存在组织特异性差异。这些发现突出了与脂质和碳水化合物代谢相关的核编码线粒体基因的组织特异性差异,反映了对每个组织独特代谢需求的适应。本研究为推进家畜线粒体代谢研究奠定了基础,对人类健康具有重要意义。这些见解可为心血管疾病和代谢综合征等代谢紊乱的饮食或治疗策略提供参考,同时也能提高家畜生产力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验