Suppr超能文献

对卡廷加生物群落蜜蜂进行条形码识别:实用综述。

Barcoding the Caatinga biome bees: a practical review.

作者信息

Rodrigues Pedro, Teixeira Cláudia, Guimarães Laura, Ferreira Nuno G C

机构信息

CIIMAR - Interdisciplinar Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, Matosinhos, 4450-208, Portugal.

Cardiff University- School of Biosciences, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.

出版信息

Mol Biol Rep. 2025 Feb 4;52(1):196. doi: 10.1007/s11033-025-10307-7.

Abstract

Bees play a critical role as pollinators in ecosystem services, contributing significantly to the sexual reproduction and diversity of plants. The Caatinga biome in Brazil, home to around 200 bee species, provides an ideal habitat for these species due to its unique climate conditions. However, this biome faces threats from anthropogenic processes, making it urgent to characterise the local bee populations efficiently. Traditional taxonomic surveys for bee identification are complex due to the lack of suitable keys and expertise required. As a result, molecular barcoding has emerged as a valuable tool, using genome regions to compare and identify bee species. However, little is known about Caatinga bees to develop these molecular tools further. This study addresses this gap, providing an updated list of 262 Caatinga bee species across 86 genera and identifying ~ 40 primer sets to aid in barcoding these species. The findings highlight the ongoing work needed to fully characterise the Caatinga biome's bee distribution and species or subspecies to support more effective monitoring and conservation efforts.

摘要

蜜蜂作为传粉者在生态系统服务中发挥着关键作用,对植物的有性繁殖和多样性有重大贡献。巴西的卡廷加生物群落是大约200种蜜蜂的家园,由于其独特的气候条件,为这些物种提供了理想的栖息地。然而,这个生物群落面临着来自人为活动的威胁,因此迫切需要有效地描述当地蜜蜂种群的特征。由于缺乏合适的鉴定检索表和所需的专业知识,传统的蜜蜂分类调查很复杂。因此,分子条形码技术作为一种有价值的工具应运而生,它利用基因组区域来比较和识别蜜蜂物种。然而,对于进一步开发这些分子工具,人们对卡廷加蜜蜂的了解甚少。本研究填补了这一空白,提供了一份涵盖86个属的262种卡廷加蜜蜂的最新清单,并鉴定出约40套引物,以帮助对这些物种进行条形码鉴定。研究结果突出了全面描述卡廷加生物群落中蜜蜂分布以及物种或亚种特征所需开展的工作,以支持更有效的监测和保护工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8be3/11794421/907499e3ec56/11033_2025_10307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验