Jian Yuanxi, Yang Suping, Liu Rui, Tan Xin, Zhao Qian, Wu Junlin, Chen Yuan
Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.).
Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China (Y.J., S.Y., R.L., X.T., Q.Z., J.W., Y.C.).
Acad Radiol. 2025 Jul;32(7):4061-4081. doi: 10.1016/j.acra.2025.01.026. Epub 2025 Feb 3.
To develop and validate a machine learning-based prediction model for the use of multiparametric magnetic resonance imaging(MRI) to predict benign and malignant lesions in the testis.
The study retrospectively enrolled 148 patients with pathologically confirmed benign and malignant testicular lesions, dividing them into: training set (n=103) and validation set (n=45). Radiomics characteristics were derived from T2-weighted(T2WI)、contrast-enhanced T1-weighted(CE-T1WI)、diffusion-weighted imaging(DWI) and Apparent diffusion coefficient(ADC) MRI images, followed by feature selection. A machine learning-based combined model was developed by incorporating radiomics scores (rad scores) from the optimal radiomics model along with clinical predictors. Draw the receiver operating characteristic (ROC) curve and use the area under the curve (AUC) to evaluate and compare the predictive performance of each model. The diagnostic efficacy of the various machine learning models was evaluated using the Delong test.
Radiomics features were extracted from four sequence-based groups(CE-T1WI+DWI+ADC+T2WI), and the model that combined Logistic Regression(LR) machine learning showed the best performance in the radiomics model. The clinical model identified one independent predictors. The combined clinical-radiomics model showed the best performance, whose AUC value was 0.932(95% confidence intervals(CI)0.868-0.978), sensitivity was 0.875, specificity was 0.871 and accuracy was 0.884 in validation set.
The combined clinical-radiomics model can be used as a reliable tool to predict benign and malignant testicular lesions and provide a reference for clinical treatment method decisions.
开发并验证一种基于机器学习的预测模型,用于利用多参数磁共振成像(MRI)预测睾丸的良性和恶性病变。
本研究回顾性纳入了148例经病理证实的睾丸良性和恶性病变患者,将其分为:训练集(n = 103)和验证集(n = 45)。从T2加权(T2WI)、对比增强T1加权(CE-T1WI)、扩散加权成像(DWI)和表观扩散系数(ADC)MRI图像中提取影像组学特征,随后进行特征选择。通过将最佳影像组学模型的影像组学评分(rad评分)与临床预测指标相结合,开发了一种基于机器学习的联合模型。绘制受试者操作特征(ROC)曲线,并使用曲线下面积(AUC)评估和比较每个模型的预测性能。使用德龙检验评估各种机器学习模型的诊断效能。
从四个基于序列的组(CE-T1WI + DWI + ADC + T2WI)中提取了影像组学特征,在影像组学模型中,结合逻辑回归(LR)机器学习的模型表现最佳。临床模型确定了一个独立预测指标。联合临床-影像组学模型表现最佳,其在验证集中的AUC值为0.932(95%置信区间[CI]0.868 - 0.978),敏感性为0.875,特异性为0.871,准确性为0.884。
联合临床-影像组学模型可作为预测睾丸良性和恶性病变的可靠工具,并为临床治疗方法决策提供参考。