Suppr超能文献

基于多参数 MRI 肿瘤影像组学的机器学习方法预测髓母细胞瘤的分子亚型。

Machine-learning approach to predict molecular subgroups of medulloblastoma using multiparametric MRI-based tumor radiomics.

机构信息

Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.

Department of Radiodiagnosis, Tata Memorial Center, Mumbai, Maharashtra, India.

出版信息

Br J Radiol. 2022 Jun 1;95(1134):20211359. doi: 10.1259/bjr.20211359. Epub 2022 Mar 23.

Abstract

OBJECTIVE

Image-based prediction of molecular subgroups of Medulloblastoma (MB) has the potential to optimize and personalize therapy. The objective of the study is to distinguish between broad molecular subgroups of MB using MR-Texture analysis.

METHODS

Thirty-eight MB patients treated between 2007 and 2020 were retrospectively analyzed. Texture analysis was performed on contrast enhanced T1(T1C) and weighted (T2W) MR images. Manual segmentation was performed on all slices and radiomic features were extracted which included first order, second order (GLCM - Grey level co-occurrence matrix) and shape features. Feature enrichment was done using LASSO (Least Absolute Shrinkage and Selection Operator) regression and thereafter Support Vector Machine (SVM) and a 10-fold cross-validation strategy was used for model development. The area under Receiver Operator Characteristic (ROC) curve was used to evaluate the model.

RESULTS

A total of 174 and 170 images were obtained for analysis from the Axial T1C and T2W image datasets. One hundred and sixty-four MR based texture features were extracted. The best model was arrived at by using a combination of 30 GLCM and six shape features on T1C MR sequence. A 10-fold cross-validation demonstrated an AUC of 0.93, 0.9, 0.93, and 0.93 in predicting WNT, SHH, Group 3, and Group 4 MB subgroups, respectively.

CONCLUSION

Radiomic analysis of MR images in MB can predict molecular subgroups with acceptable degree of accuracy. The strategy needs further validation in an external dataset for its potential use in management paradigms of MBs.

ADVANCES IN KNOWLEDGE

Medulloblastoma can be classified into four distinct molecular subgroups using radiomic feature classifier from non-invasive Multiparametric Magnetic resonance imaging. This can have future ramifications in the extent of surgical resection of Medulloblastoma which can ultimately result in reduction of morbidity.

摘要

目的

基于图像的髓母细胞瘤(MB)分子亚组预测具有优化和个性化治疗的潜力。本研究的目的是使用磁共振纹理分析来区分 MB 的广泛分子亚组。

方法

回顾性分析了 2007 年至 2020 年间治疗的 38 例 MB 患者。对对比增强 T1(T1C)和加权(T2W)磁共振图像进行纹理分析。对所有切片进行手动分割,并提取放射组学特征,包括一阶、二阶(灰度共生矩阵-GLCM)和形状特征。使用 LASSO(最小绝对值收缩和选择算子)回归进行特征富集,然后使用支持向量机(SVM)和 10 倍交叉验证策略进行模型开发。使用接收器操作特征(ROC)曲线下面积评估模型。

结果

分别从轴向 T1C 和 T2W 图像数据集获得了 174 张和 170 张图像进行分析。提取了 164 个基于磁共振的纹理特征。在 T1C MR 序列上使用 30 个 GLCM 和 6 个形状特征的组合得到了最佳模型。10 倍交叉验证在预测 WNT、SHH、Group 3 和 Group 4 MB 亚组时,AUC 分别为 0.93、0.9、0.93 和 0.93。

结论

MB 磁共振图像的放射组学分析可以以可接受的准确度预测分子亚组。该策略需要在外部数据集进一步验证,以潜在用于 MB 的管理模式。

知识进展

使用来自非侵入性多参数磁共振成像的放射组学特征分类器可以将髓母细胞瘤分为四个不同的分子亚组。这可能会对髓母细胞瘤的手术切除范围产生影响,最终导致发病率降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验