Suppr超能文献

基于可解释机器学习的多参数MRI影像组学用于直肠癌微卫星不稳定性的术前评估

Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer.

作者信息

Wang Yueyan, Xie Bo, Wang Kai, Zou Wentao, Liu Aie, Xue Zhong, Liu Mengxiao, Ma Yichuan

机构信息

Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z., Y.M.); Graduate School of Bengbu Medical University, Bengbu 233000, China (Y.W., B.X., K.W., W.Z.).

Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200126, China (A.L., Z.X.).

出版信息

Acad Radiol. 2025 Jul;32(7):3975-3988. doi: 10.1016/j.acra.2025.02.009. Epub 2025 Feb 26.

Abstract

RATIONALE AND OBJECTIVES

This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI) status of rectal cancer (RC) patients.

MATERIALS AND METHODS

This retrospective study recruited 291 rectal cancer patients with pathologically confirmed MSI status and randomly divided them into a training cohort and a testing cohort at a ratio of 8:2. First, the K-means method was used for cluster analysis of tumor voxels, and sub-region radiomics features and classical radiomics features were respectively extracted from multi-parameter MRI sequences. Then, the synthetic minority over-sampling technique method was used to balance the sample size, and finally, the features were screened. Prediction models were established using logistic regression based on clinicopathological variables, classical radiomics features, and MSI-related sub-region radiomics features, and the contribution of each feature to the model decision was quantified by the Shapley-Additive-Explanations (SHAP) algorithm.

RESULTS

The area under the curve (AUC) of the sub-region radiomics model in the training and testing groups was 0.848 and 0.8, respectively, both better than that of the classical radiomics and clinical models. The combined model performed the best, with AUCs of 0.908 and 0.863 in the training and testing groups, respectively.

CONCLUSION

We developed and validated a robust combined model that integrates clinical variables, classical radiomics features, and sub-region radiomics features to accurately determine the MSI status of RC patients. We visualized the prediction process using SHAP, enabling more effective personalized treatment plans and ultimately improving RC patient survival rates.

摘要

原理与目的

本研究基于多参数MRI亚区域栖息地放射组学和临床病理特征构建了一个可解释的机器学习模型,旨在术前评估直肠癌(RC)患者的微卫星不稳定性(MSI)状态。

材料与方法

本回顾性研究纳入了291例经病理证实MSI状态的直肠癌患者,并以8:2的比例随机分为训练队列和测试队列。首先,采用K均值方法对肿瘤体素进行聚类分析,分别从多参数MRI序列中提取亚区域放射组学特征和经典放射组学特征。然后,使用合成少数过采样技术方法平衡样本量,最后对特征进行筛选。基于临床病理变量、经典放射组学特征和MSI相关亚区域放射组学特征,使用逻辑回归建立预测模型,并通过Shapley加性解释(SHAP)算法量化每个特征对模型决策的贡献。

结果

亚区域放射组学模型在训练组和测试组的曲线下面积(AUC)分别为0.848和0.8,均优于经典放射组学和临床模型。联合模型表现最佳,训练组和测试组的AUC分别为0.908和0.863。

结论

我们开发并验证了一个强大的联合模型,该模型整合了临床变量、经典放射组学特征和亚区域放射组学特征,以准确确定RC患者的MSI状态。我们使用SHAP可视化了预测过程,从而能够制定更有效的个性化治疗方案,并最终提高RC患者的生存率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验