Suppr超能文献

用于安排急性病毒感染治疗方案的多目标控制

Multi-objective control to schedule therapies for acute viral infections.

作者信息

Perez Mara, Actis Marcelo, Sanchez Ignacio, Hernandez-Vargas Esteban A, González Alejandro H

机构信息

Instituto Tecnológico para el Desarrollo de la Industria Química (INTEC), Universidad Nacional del Litoral (UNL) and Consejo Nacional de Investigaciones científicas y técnicas (CONICET), Santa Fe, Argentina.

Facultad de Ingeniería Química (FIQ), Universidad Nacional del Litoral (UNL) and Consejo Nacional de Investigaciones científicas y técnicas (CONICET), Santa Fe, Argentina.

出版信息

J Math Biol. 2025 Feb 4;90(2):25. doi: 10.1007/s00285-025-02188-y.

Abstract

Antiviral therapies can yield different outcomes depending on their scheduling: a highly effective drug may produce treatment results ranging from successful to inconsequential, depending on therapeutic timing, dosing intervals, and dosage. The effectiveness of antiviral therapies can be assessed using mathematical models that describe viral spread within a host. In this work, we conduct a study based on the dynamic characterization of a target-cell model to address a multi-objective control problem aimed at designing highly effective and host-customizable antiviral therapies. These therapies involve finite-time antiviral treatments that minimize the viral load peak and the infection final size until infection clearance, while simultaneously reducing the total amount of drug intake as much as possible. Two optimization-based control strategies are proposed: a fixed-dose and a variable-dose approach. The variable-dose strategy achieves superior performance by explicitly considering the system dynamics in the design of the control. Simulation results, based on an identified model for COVID-19 patients treated with Paxlovid, illustrate the potential benefits of the proposed strategies.

摘要

抗病毒疗法根据其给药方案可能产生不同的结果

一种高效药物可能产生从成功到无关紧要的治疗效果,这取决于治疗时机、给药间隔和剂量。抗病毒疗法的有效性可以使用描述病毒在宿主体内传播的数学模型来评估。在这项工作中,我们基于目标细胞模型的动态特征进行了一项研究,以解决一个多目标控制问题,旨在设计高效且可根据宿主定制的抗病毒疗法。这些疗法涉及有限时间的抗病毒治疗,可在感染清除前将病毒载量峰值和感染最终规模降至最低,同时尽可能减少药物摄入总量。提出了两种基于优化的控制策略:固定剂量和可变剂量方法。可变剂量策略通过在控制设计中明确考虑系统动态来实现卓越性能。基于为接受帕罗韦德治疗的新冠肺炎患者确定的模型的模拟结果,说明了所提出策略的潜在益处。

相似文献

本文引用的文献

3
Dynamical characterization of antiviral effects in COVID-19.新型冠状病毒肺炎抗病毒作用的动力学特征
Annu Rev Control. 2021;52:587-601. doi: 10.1016/j.arcontrol.2021.05.001. Epub 2021 May 28.
4
Characterization of SARS-CoV-2 dynamics in the host.新冠病毒在宿主体内的动态特征
Annu Rev Control. 2020;50:457-468. doi: 10.1016/j.arcontrol.2020.09.008. Epub 2020 Oct 6.
5
In-host Mathematical Modelling of COVID-19 in Humans.新冠病毒在人体内的宿主数学建模
Annu Rev Control. 2020;50:448-456. doi: 10.1016/j.arcontrol.2020.09.006. Epub 2020 Sep 30.
6
Virological assessment of hospitalized patients with COVID-2019.住院 COVID-19 患者的病毒学评估。
Nature. 2020 May;581(7809):465-469. doi: 10.1038/s41586-020-2196-x. Epub 2020 Apr 1.
7
Reproduction numbers of infectious disease models.传染病模型的繁殖数。
Infect Dis Model. 2017 Jun 29;2(3):288-303. doi: 10.1016/j.idm.2017.06.002. eCollection 2017 Aug.
8
In-host modeling.宿主体内建模
Infect Dis Model. 2017 Apr 29;2(2):188-202. doi: 10.1016/j.idm.2017.04.002. eCollection 2017 May.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验