Suppr超能文献

独立成分分析预处理如何影响脑电图微状态?

How does Independent Component Analysis Preprocessing Affect EEG Microstates?

作者信息

Artoni Fiorenzo, Michel Christoph M

机构信息

Department of Clinical Neurosciences, Faculty of Medicine, Université de Genève, Geneva, Switzerland.

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

出版信息

Brain Topogr. 2025 Feb 4;38(2):26. doi: 10.1007/s10548-024-01098-4.

Abstract

Over recent years, electroencephalographic (EEG) microstates have been increasingly used to investigate, at a millisecond scale, the temporal dynamics of large-scale brain networks. By studying their topography and chronological sequence, microstates research has contributed to the understanding of the brain's functional organization at rest and its alteration in neurological or mental disorders. Artifact removal strategies, which differ from study to study, may alter microstates topographies and features, possibly reducing the generalizability and comparability of results across research groups. The aim of this work was therefore to test the reliability of the microstate extraction process and the stability of microstate features against different strategies of EEG data preprocessing with Independent Component Analysis (ICA) to remove artifacts embedded in the data. A normative resting state EEG dataset was used where subjects alternate eyes-open (EO) and eyes-closed (EC) periods. Four strategies were tested: (i) avoiding ICA preprocessing altogether, (ii) removing ocular artifacts only, (iii) removing all reliably identified physiological/non physiological artifacts, (iv) retaining only reliably identified brain ICs. Results show that skipping the removal of ocular artifacts affects the stability of microstate evaluation criteria, microstate topographies and greatly reduces the statistical power of EO/EC microstate features comparisons, however differences are not as prominent with more aggressive preprocessing. Provided a good-quality dataset is recorded, and ocular artifacts are removed, microstates topographies and features can capture brain-related physiological data and are robust to artifacts, independently of the level of preprocessing, paving the way to automatized microstate extraction pipelines.

摘要

近年来,脑电图(EEG)微状态越来越多地被用于在毫秒尺度上研究大规模脑网络的时间动态。通过研究其拓扑结构和时间序列,微状态研究有助于理解大脑在静息状态下的功能组织及其在神经或精神疾病中的改变。不同研究中的伪迹去除策略可能会改变微状态的拓扑结构和特征,这可能会降低研究结果在不同研究组之间的普遍性和可比性。因此,这项工作的目的是测试微状态提取过程的可靠性以及微状态特征对不同脑电图数据预处理策略(使用独立成分分析(ICA)去除数据中嵌入的伪迹)的稳定性。使用了一个标准化的静息状态脑电图数据集,其中受试者交替进行睁眼(EO)和闭眼(EC)阶段。测试了四种策略:(i)完全避免ICA预处理,(ii)仅去除眼部伪迹,(iii)去除所有可靠识别的生理/非生理伪迹,(iv)仅保留可靠识别的脑独立成分。结果表明,跳过眼部伪迹的去除会影响微状态评估标准、微状态拓扑结构的稳定性,并大大降低EO/EC微状态特征比较的统计功效,然而,更激进的预处理时差异并不那么显著。如果记录了高质量的数据集并去除了眼部伪迹,微状态拓扑结构和特征可以捕捉与大脑相关的生理数据,并且对伪迹具有鲁棒性,与预处理水平无关,这为自动化微状态提取流程铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b99/11794336/80e38c558302/10548_2024_1098_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验