Vu Tien Van, Nguyen Ngan Thi, Kim Jihae, Vu Minh Huy, Song Young Jong, Tran Mil Thi, Sung Yeon Woo, Kim Jae-Yean
Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
Current affiliation: Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea.
Hortic Res. 2024 Oct 23;12(2):uhae294. doi: 10.1093/hr/uhae294. eCollection 2025 Jan.
The CRISPR-Cas-based gene targeting (GT) method has enabled precise modifications of genomic DNA ranging from single base to several kilobase scales through homologous recombination (HR). In plant somatic cells, canonical non-homologous end-joining (cNHEJ) is the predominant mechanism for repairing double-stranded breaks (DSBs), thus limiting the HR-mediated GT. In this study, we implemented an approach to shift the repair pathway preference toward HR by using a dominant-negative mutant protein (KUDN) to disrupt the initiation of cNHEJ. The employment of KUDN conferred a 1.71- to 3.55-fold improvement in GT efficiency at the callus stage. When we screened transformants, there was a more remarkable increase in GT efficiency, ranging from 1.62- to 9.84-fold, at two specific tomato loci, and . With practical levels of efficiency, this enhanced KUDN-based GT tool successfully facilitated a 9-bp addition at an additional locus, . These findings provide another promising method for more efficient and precise plant breeding.
基于CRISPR-Cas的基因靶向(GT)方法能够通过同源重组(HR)对从单碱基到几千碱基规模的基因组DNA进行精确修饰。在植物体细胞中,经典非同源末端连接(cNHEJ)是修复双链断裂(DSB)的主要机制,从而限制了HR介导的GT。在本研究中,我们实施了一种方法,通过使用显性负性突变蛋白(KUDN)破坏cNHEJ的起始,将修复途径偏好转向HR。在愈伤组织阶段,使用KUDN使GT效率提高了1.71至3.55倍。当我们筛选转化体时,在两个特定的番茄基因座和处,GT效率有更显著的提高,范围从1.62至9.84倍。凭借实际的效率水平,这种基于KUDN增强的GT工具成功地在另一个基因座处实现了9个碱基的添加。这些发现为更高效、精确的植物育种提供了另一种有前景的方法。