Suppr超能文献

染色体网络:基于深度学习的中期细胞图像自动染色体检测

ChromosomeNet: Deep Learning-Based Automated Chromosome Detection in Metaphase Cell Images.

作者信息

Kuo Chih-En, Li Jun-Zhou, Tseng Jenn-Jhy, Lo Feng-Chu, Chen Ming-Jer, Lu Chien-Hsing

机构信息

Institute of Data Science and Information ComputingNational Chung Hsing University Taichung 402 Taiwan.

Department of Automatic Control EngineeringFeng Chia University Taichung 407 Taiwan.

出版信息

IEEE Open J Eng Med Biol. 2024 Dec 9;6:227-236. doi: 10.1109/OJEMB.2024.3512932. eCollection 2025.

Abstract

Chromosomes are intracellular aggregates that carry genetic information. An abnormal number or structure of chromosomes causes chromosomal disorders. Thus, chromosome screening is crucial for prenatal care; however, manual analysis of chromosomes is time consuming. With the increasing popularity of prenatal diagnosis, human labor resources are overstretched. Therefore, an automatic approach for chromosome detection and recognition is necessary. In the present study, we proposed a deep learning-based system for the automatic chromosome detection and recognition of metaphase cell images. We used a large database that included 5,000 metaphase cell images consisting of a total of 229,852 chromosomes. The proposed system was then developed and evaluated. The system, called ChromosomesNet, which combines the advantages of one-stage and two-stage models. The model uses original images as inputs without requiring preprocessing; it is thus applicable for clinical settings. To verify the clinical applicability of our system, we included 3,827 simple images and 1,173 difficult images, as identified by physicians, in our database. We used COCOAPI's mAP50 evaluation method, which has average performance and a high accuracy of 99.60%. Moreover, the recall and F1 score of our proposed method were 99.9% and 99.49%, respectively. We also compared our method with five well-known object detection methods, including Faster-RCNN, YOLOv7, Retinanet, Swin transformer, and Centernet++. The results indicated that ChromosomesNet had the highest accuracy, recall, and F1 score. Unlike previous studies that have reported simple chromosome images as identification results, we obtained a 99.5% accuracy in the detection of difficult images. The volume of data we tested, even including difficult images, was much larger than those in the literature. The results indicated that our proposed method is sufficiently stable, robustness, and practical for clinical use. Future studies are warranted to confirm the clinical applicability of our proposed method by using data from other hospitals for cross-hospital validation.

摘要

染色体是携带遗传信息的细胞内聚集体。染色体数量或结构异常会导致染色体疾病。因此,染色体筛查对产前护理至关重要;然而,手动分析染色体非常耗时。随着产前诊断的日益普及,人力资源不堪重负。因此,需要一种自动的染色体检测和识别方法。在本研究中,我们提出了一种基于深度学习的系统,用于自动检测和识别中期细胞图像中的染色体。我们使用了一个大型数据库,其中包含5000张中期细胞图像,总共229852条染色体。然后开发并评估了所提出的系统。该系统名为ChromosomesNet,它结合了单阶段和两阶段模型的优点。该模型使用原始图像作为输入,无需预处理;因此适用于临床环境。为了验证我们系统的临床适用性,我们在数据库中纳入了3827张简单图像和1173张经医生认定的困难图像。我们使用了COCOAPI的mAP50评估方法,其平均性能良好,准确率高达99.60%。此外,我们提出的方法的召回率和F1分数分别为99.9%和99.49%。我们还将我们的方法与五种著名的目标检测方法进行了比较,包括Faster-RCNN、YOLOv7、Retinanet、Swin transformer和Centernet++。结果表明,ChromosomesNet具有最高的准确率、召回率和F1分数。与之前将简单染色体图像作为识别结果的研究不同,我们在困难图像检测中获得了99.5%的准确率。我们测试的数据量,即使包括困难图像,也比文献中的数据量大得多。结果表明,我们提出的方法足够稳定、稳健且适用于临床。未来的研究有必要通过使用其他医院的数据进行跨医院验证,来确认我们提出的方法的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19e9/11793862/544de0524e98/lu1-3512932.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验