Suppr超能文献

变焦距网络:一种使用深度卷积网络的染色体分类方法。

Varifocal-Net: A Chromosome Classification Approach Using Deep Convolutional Networks.

出版信息

IEEE Trans Med Imaging. 2019 Nov;38(11):2569-2581. doi: 10.1109/TMI.2019.2905841. Epub 2019 Mar 19.

Abstract

Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosome's type and polarity using deep convolutional networks. The approach consists of one global-scale network (G-Net) and one local-scale network (L-Net). It follows three stages. The first stage is to learn both global and local features. We extract global features and detect finer local regions via the G-Net. By proposing a varifocal mechanism, we zoom into local parts and extract local features via the L-Net. Residual learning and multi-task learning strategies are utilized to promote high-level feature extraction. The detection of discriminative local parts is fulfilled by a localization subnet of the G-Net, whose training process involves both supervised and weakly supervised learning. The second stage is to build two multi-layer perceptron classifiers that exploit features of both two scales to boost classification performance. The third stage is to introduce a dispatch strategy of assigning each chromosome to a type within each patient case, by utilizing the domain knowledge of karyotyping. The evaluation results from 1909 karyotyping cases showed that the proposed Varifocal-Net achieved the highest accuracy per patient case (%) of 99.2 for both type and polarity tasks. It outperformed state-of-the-art methods, demonstrating the effectiveness of our varifocal mechanism, multi-scale feature ensemble, and dispatch strategy. The proposed method has been applied to assist practical karyotype diagnosis.

摘要

染色体分类在异常诊断的核型分析中至关重要。为了加速诊断,我们提出了一种名为 Varifocal-Net 的新方法,该方法使用深度卷积网络同时对染色体的类型和极性进行分类。该方法由一个全局尺度网络(G-Net)和一个局部尺度网络(L-Net)组成。它分为三个阶段。第一阶段是学习全局和局部特征。我们通过 G-Net 提取全局特征并检测更精细的局部区域。通过提出变焦点机制,我们通过 L-Net 放大到局部区域并提取局部特征。残差学习和多任务学习策略用于促进高级特征提取。G-Net 的定位子网络完成有区分力的局部区域的检测,其训练过程涉及监督学习和弱监督学习。第二阶段是构建两个多层感知机分类器,利用两个尺度的特征来提高分类性能。第三阶段是通过利用核型分析的领域知识,引入一种为每个患者病例中的每条染色体分配类型的分配策略。从 1909 个核型病例的评估结果表明,所提出的 Varifocal-Net 在类型和极性任务方面,每个患者病例的准确率最高(%)为 99.2。它优于最先进的方法,证明了我们的变焦点机制、多尺度特征集成和分配策略的有效性。该方法已应用于辅助实际核型诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验