Suppr超能文献

使用贝叶斯网络分析预测爱泼斯坦-巴尔病毒再激活的风险因素:一项基于人群的鼻咽癌高危地区研究。

Predicting risk factors for Epstein-Barr virus reactivation using Bayesian network analysis: a population-based study of high-risk areas for nasopharyngeal cancer.

作者信息

Zeng Zhiwen, Lin Kena, Li Xueqi, Li Tong, Li Xiaoman, Li Jiayi, Ning Zule, Liu Qinxian, Xie Shanghang, Cao Sumei, Du Jinlin

机构信息

School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China.

Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, China.

出版信息

Front Oncol. 2025 Jan 21;14:1369765. doi: 10.3389/fonc.2024.1369765. eCollection 2024.

Abstract

BACKGROUND AND OBJECTIVE

Nasopharyngeal carcinoma (NPC) is a rare disease in most parts of the world, but it is highly prevalent in South China. Epstein-Barr virus (EBV) is one of the major risk factors for NPC. Hence, understanding the factors associated with the reactivation of EBV from the latent stage is crucial for preventing NPC. This study aimed to investigate the risk factors for EBV reactivation associated with NPC in high-prevalence areas in China using a Bayesian network (BN) model combined with structural equation modeling tools.

METHODS

The baseline information for this study was derived from NPC screening data from a population-based prospective cohort in Sihui City, Guangdong Province, China. We divided the data into a training dataset and a test dataset. We then constructed an interaction networktionba BN prediction model to explore the risk factors for EBV reactivation, which was compared with a conventional logistic regression model.

RESULTS

A total of 12,579 participants were included in the analyses, with 1596 participant pairs finally included after the use of a nested case-control study. The results of multivariable logistic regression showed that only being older than 60 years (OR = 1.718, 95% CI = 1.273,2.322) and being a current smoker (OR = 1.477, 95% CI = 1.167 - 1.872) were the risk factors for EBV reactivation. The results of the model constructed using BN showed that age and smoking were directly associated with EBV reactivation. In contrast, sex, education level, tea drinking, cooking, and family history of cancer were indirectly associated with EBV reactivation. Further, we predicted the risk of EBV reactivation using Bayesian inference and visualized the BN inference. Model prediction performance was evaluated using the test dataset. The results showed that the BN model slightly outperformed the traditional logistic regression model in all metrics.

CONCLUSIONS

BN not only reflects the complex interaction between factors but also visualizes the prediction results. It has a promising application potential in the risk prediction of EBV reactivation associated with NPC.

摘要

背景与目的

鼻咽癌(NPC)在世界大部分地区是一种罕见疾病,但在中国南方地区高度流行。爱泼斯坦-巴尔病毒(EBV)是鼻咽癌的主要危险因素之一。因此,了解与EBV从潜伏阶段重新激活相关的因素对于预防鼻咽癌至关重要。本研究旨在使用贝叶斯网络(BN)模型结合结构方程建模工具,调查中国高流行地区与鼻咽癌相关的EBV重新激活的危险因素。

方法

本研究的基线信息来自中国广东省四会市一项基于人群的前瞻性队列的鼻咽癌筛查数据。我们将数据分为训练数据集和测试数据集。然后构建了一个交互网络贝叶斯网络预测模型来探索EBV重新激活的危险因素,并与传统逻辑回归模型进行比较。

结果

共有12579名参与者纳入分析,在使用巢式病例对照研究后最终纳入1596对参与者。多变量逻辑回归结果显示,仅年龄大于60岁(比值比[OR]=1.718,95%置信区间[CI]=1.273,2.322)和当前吸烟者(OR=1.477,95%CI=1.167 - 1.872)是EBV重新激活的危险因素。使用贝叶斯网络构建的模型结果显示,年龄和吸烟与EBV重新激活直接相关。相比之下,性别、教育水平、饮茶、烹饪和癌症家族史与EBV重新激活间接相关。此外,我们使用贝叶斯推理预测了EBV重新激活的风险,并可视化了贝叶斯网络推理。使用测试数据集评估模型预测性能。结果显示,在所有指标上,贝叶斯网络模型略优于传统逻辑回归模型。

结论

贝叶斯网络不仅反映了因素之间的复杂相互作用,还可视化了预测结果。它在与鼻咽癌相关的EBV重新激活的风险预测中具有广阔的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10cf/11790440/edf1ec6722c2/fonc-14-1369765-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验