Suppr超能文献

基于-的生物杂交磁性微型机器人集群的集体重构与推进行为

Collective Reconfiguration and Propulsion Behaviors of -Based Biohybrid Magnetic Microrobot Swarm.

作者信息

Gong De, Cai Jun, Gu Bo, Zhou Hui, Celi Nuoer, Peng Guanya, Zhang Deyuan

机构信息

School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China.

出版信息

ACS Appl Mater Interfaces. 2025 Feb 19;17(7):11062-11072. doi: 10.1021/acsami.4c19275. Epub 2025 Feb 5.

Abstract

Magnetic microrobots hold great promise for applications in drug delivery and environmental remediation, but achieving collective reconfiguration and effective propulsion for dense, motile magnetic microrobots remains a significant challenge. In this research, we have fabricated -based biohybrid magnetic microrobots in bulk using a facile biotemplating process and studied their superior reconfiguration and propulsion performance. Our results show that the dispersed superparamagnetic individuals can self-organize into a swarm of chain-like multimers, achieving effective propulsion via rolling or tumbling modes. The near-bound locomotion process demonstrates pseudochiral periodic reciprocation properties, and a detailed morphological analysis has been conducted. Furthermore, the microrobots can form vortices and realize swarm propulsion in spinning mode. These findings indicate that the spheroidal microrobots exhibit high maneuverability in programmable self-assembly, collective reconfiguration, and swarm propulsion based on dynamic magnetic interactions. In summary, this research provides a feasible method for constructing reconfigurable magnetic microrobots and explores an applicable paradigm for their flexible swarm control and collective cooperation. These advances have significant implications for practical applications of magnetic microrobots in various fields.

摘要

磁性微型机器人在药物递送和环境修复应用中具有巨大潜力,但对于密集、可移动的磁性微型机器人而言,实现集体重构和有效推进仍然是一项重大挑战。在本研究中,我们通过简便的生物模板法批量制备了基于[具体物质未给出]的生物杂交磁性微型机器人,并研究了它们卓越的重构和推进性能。我们的结果表明,分散的超顺磁性个体能够自组织成一群链状多聚体,通过滚动或翻滚模式实现有效推进。近边界运动过程展示出假手性周期性往复特性,并已进行了详细的形态分析。此外,微型机器人能够形成涡旋并在旋转模式下实现群体推进。这些发现表明,基于动态磁相互作用,球形微型机器人在可编程自组装、集体重构和群体推进方面展现出高机动性。总之,本研究为构建可重构磁性微型机器人提供了一种可行方法,并探索了其灵活群体控制和集体协作的适用范式。这些进展对磁性微型机器人在各个领域的实际应用具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验