Strijker Josephine G M, Pascual-Pasto Guillem, Grothusen Grant P, Kalmeijer Yannine J, Kalaitsidou Elisavet, Zhao Chunlong, McIntyre Brendan, Matlaga Stephanie, Visser Lindy L, Barisa Marta, Himsworth Courtney, Shah Rivani, Muller Henrike, Schild Linda G, Hains Peter G, Zhong Qing, Reddel Roger R, Robinson Phillip J, Catena Xavier, Soengas María S, Margaritis Thanasis, Dekker Frank J, Anderson John, Molenaar Jan J, Bosse Kristopher R, Wu Wei, Wienke Judith
Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA 19104, USA.
Eur J Cancer. 2025 Mar 11;218:115263. doi: 10.1016/j.ejca.2025.115263. Epub 2025 Jan 27.
Chimeric antigen receptor (CAR) T-cell therapy is a promising and innovative cancer therapy. However, immunosuppressive tumor microenvironments (TME) limit T cell persistence and durable efficacy. Here, we aimed to identify and target immunosuppressive factors in the TME of neuroblastoma, a pediatric extracranial solid tumor, to improve CAR-T efficacy.
Immunosuppressive factors were identified using a multi-omics approach, including single-cell RNA sequencing (scRNA-seq) of 24 neuroblastoma tumors, published bulk-RNA sequencing datasets, and mass-spectrometry of patient-derived tumoroid models. Candidate targets were validated with functional assays in vitro and in vivo. Protein degradation of the top immunosuppressive target by PROTAC technology was used to evaluate the effect on CAR T-cell activity.
ScRNA-seq revealed 13 immunosuppressive interactions in the TME of neuroblastoma, two effectors of which, Midkine (MDK) and Macrophage Migration Inhibitory Factor (MIF), were validated as candidate targets across multiple published datasets. Both factors were among the top 6 % of most abundantly secreted factors by patient-derived tumoroid models, substantiating their potential relevance in the TME. In vitro and in vivo functional assays confirmed MIF to be a potent inhibitor of CAR T-cell activation and killing capacity. To translate these findings into a potentially clinically applicable treatment, we explored MIF targeting by PROTAC technology, which significantly enhanced activation of CAR T-cells targeting GPC2 and B7-H3.
By defining the immunosuppressive effects of neuroblastoma's TME on CAR T-cell efficacy, revealing the pivotal role of MIF, we provide an analytic pipeline and therapeutic strategy for improving adoptive cell therapies for this pediatric malignancy and potentially other solid tumors.
嵌合抗原受体(CAR)T细胞疗法是一种有前景的创新性癌症治疗方法。然而,免疫抑制性肿瘤微环境(TME)限制了T细胞的持久性和持久疗效。在此,我们旨在识别并靶向神经母细胞瘤(一种儿童颅外实体瘤)TME中的免疫抑制因子,以提高CAR-T疗效。
使用多组学方法识别免疫抑制因子,包括对24个神经母细胞瘤肿瘤进行单细胞RNA测序(scRNA-seq)、已发表的批量RNA测序数据集以及患者来源肿瘤样模型的质谱分析。通过体外和体内功能试验验证候选靶点。利用PROTAC技术对顶级免疫抑制靶点进行蛋白质降解,以评估其对CAR T细胞活性的影响。
scRNA-seq揭示了神经母细胞瘤TME中的13种免疫抑制相互作用,其中两种效应因子,中期因子(MDK)和巨噬细胞迁移抑制因子(MIF),在多个已发表的数据集中被验证为候选靶点。这两种因子均在患者来源肿瘤样模型分泌最丰富的前6%因子之中,证实了它们在TME中的潜在相关性。体外和体内功能试验证实MIF是CAR T细胞激活和杀伤能力的有效抑制剂。为了将这些发现转化为潜在的临床适用治疗方法,我们探索了通过PROTAC技术靶向MIF,这显著增强了靶向GPC2和B7-H3的CAR T细胞的激活。
通过定义神经母细胞瘤TME对CAR T细胞疗效的免疫抑制作用,揭示MIF的关键作用,我们提供了一种分析流程和治疗策略,以改善这种儿童恶性肿瘤以及潜在其他实体瘤的过继性细胞疗法。