Suppr超能文献

基于人工智能的心电图算法对射血分数降低的心力衰竭进行评估的诊断准确性:一项系统评价和荟萃分析。

Diagnostic accuracy of artificial-intelligence-based electrocardiogram algorithm to estimate heart failure with reduced ejection fraction: A systematic review and meta-analysis.

作者信息

Ferreira André Luiz Carvalho, Feitoza Luanna Paula Garcez de Carvalho, Benitez Maria E, Aziri Buena, Begic Edin, de Souza Luciana Vergara Ferraz, Bulhões Elísio, Monteiro Sarah O N, Defante Maria L R, Vieira Roberto Augusto Mazetto Silva, Guida Camila

机构信息

Pontifical Catholic University of Paraná, Curitiba, Brazil.

Center University Fametro, Manaus, Brazil.

出版信息

Curr Probl Cardiol. 2025 Apr;50(4):103004. doi: 10.1016/j.cpcardiol.2025.103004. Epub 2025 Feb 3.

Abstract

INTRODUCTION

AI-based ECG has shown good accuracy in diagnosing heart failure. However, due to the heterogeneity of studies regarding cutoff points, its precision for specifically detecting heart failure with left ventricle reduced ejection fraction (LVEF <40 %) is not yet well established. What is the sensitivity and specificity of artificial-based electrocardiogram to diagnose heart failure with low ejection fraction (cut-off of 40 %.

AIMS

We conducted a meta-analysis and systematic review to evaluate the accuracy of artificial intelligence electrocardiograms in estimating an ejection fraction below 40 %.

METHODS

We searched PubMed, Embase, and Cochrane Library for studies evaluating the performance of AI ECGs in diagnosing heart failure with reduced ejection fraction. We computed true positives, true negatives, false positives, and false negatives events to estimate pooled sensitivity, specificity, and area under the curve, using R software version 4.3.1, under a random-effects model.

RESULTS

We identified 9 studies, including patients with a paired artificial intelligence-enabled electrocardiogram with an echocardiography. patients had an ejection fraction below 40 % according to the echocardiogram. The AI-ECG data yielded areas under the receiver operator of, the sensitivity of), specificity of, and area under the curve of. The mean/median age ranged from 60±9 to 68.05± 11.9 years.

CONCLUSIONS

In this systematic review and meta-analysis, the use of electrocardiogram-based artificial intelligence models demonstrated high sensitivity and specificity to estimate a left ventricular ejection fraction below 40 %.

摘要

引言

基于人工智能的心电图在心力衰竭诊断中已显示出良好的准确性。然而,由于关于截断点的研究存在异质性,其在特异性检测左心室射血分数降低(LVEF<40%)的心力衰竭方面的精确度尚未得到充分确立。基于人工智能的心电图诊断低射血分数心力衰竭(截断值为40%)的敏感性和特异性如何?

目的

我们进行了一项荟萃分析和系统评价,以评估人工智能心电图在估计射血分数低于40%方面的准确性。

方法

我们在PubMed、Embase和Cochrane图书馆中检索了评估人工智能心电图在诊断射血分数降低的心力衰竭中的性能的研究。我们使用R软件版本4.3.1,在随机效应模型下计算真阳性、真阴性、假阳性和假阴性事件,以估计合并敏感性、特异性和曲线下面积。

结果

我们确定了9项研究,包括配对的人工智能心电图和超声心动图检查的患者。根据超声心动图,患者的射血分数低于40%。人工智能心电图数据得出的受试者操作曲线下面积为 ,敏感性为 ,特异性为 ,曲线下面积为 。平均/中位数年龄范围为60±9至68.05±11.9岁。

结论

在这项系统评价和荟萃分析中,基于心电图的人工智能模型在估计左心室射血分数低于40%时显示出高敏感性和特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验