文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能辅助心电图筛查左心室收缩功能障碍:系统评价。

Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review.

机构信息

Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.

Department of Cardiology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.

出版信息

Heart Fail Rev. 2023 Mar;28(2):419-430. doi: 10.1007/s10741-022-10283-1. Epub 2022 Nov 8.


DOI:10.1007/s10741-022-10283-1
PMID:36344908
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9640840/
Abstract

Screening for left ventricular systolic dysfunction (LVSD), defined as reduced left ventricular ejection fraction (LVEF), deserves renewed interest as the medical treatment for the prevention and progression of heart failure improves. We aimed to review the updated literature to outline the potential and caveats of using artificial intelligence-enabled electrocardiography (AIeECG) as an opportunistic screening tool for LVSD.We searched PubMed and Cochrane for variations of the terms "ECG," "Heart Failure," "systolic dysfunction," and "Artificial Intelligence" from January 2010 to April 2022 and selected studies that reported the diagnostic accuracy and confounders of using AIeECG to detect LVSD.Out of 40 articles, we identified 15 relevant studies; eleven retrospective cohorts, three prospective cohorts, and one case series. Although various LVEF thresholds were used, AIeECG detected LVSD with a median AUC of 0.90 (IQR from 0.85 to 0.95), a sensitivity of 83.3% (IQR from 73 to 86.9%) and a specificity of 87% (IQR from 84.5 to 90.9%). AIeECG algorithms succeeded across a wide range of sex, age, and comorbidity and seemed especially useful in non-cardiology settings and when combined with natriuretic peptide testing. Furthermore, a false-positive AIeECG indicated a future development of LVSD. No studies investigated the effect on treatment or patient outcomes.This systematic review corroborates the arrival of a new generic biomarker, AIeECG, to improve the detection of LVSD. AIeECG, in addition to natriuretic peptides and echocardiograms, will improve screening for LVSD, but prospective randomized implementation trials with added therapy are needed to show cost-effectiveness and clinical significance.

摘要

筛查左心室收缩功能障碍(LVSD),即左心室射血分数(LVEF)降低,值得重新关注,因为预防和延缓心力衰竭的医学治疗方法正在不断进步。我们旨在回顾最新文献,概述使用人工智能心电图(AIeECG)作为 LVSD 机会性筛查工具的潜力和注意事项。我们在 PubMed 和 Cochrane 中搜索了 2010 年 1 月至 2022 年 4 月间“心电图”、“心力衰竭”、“收缩功能障碍”和“人工智能”等术语的变体,并选择了报告使用 AIeECG 检测 LVSD 的诊断准确性和混杂因素的研究。在 40 篇文章中,我们确定了 15 篇相关研究;11 项回顾性队列研究、3 项前瞻性队列研究和 1 项病例系列研究。虽然使用了各种 LVEF 阈值,但 AIeECG 检测 LVSD 的 AUC 中位数为 0.90(0.85 至 0.95 的 IQR),敏感性为 83.3%(73 至 86.9%的 IQR),特异性为 87%(84.5 至 90.9%的 IQR)。AIeECG 算法在广泛的性别、年龄和合并症范围内都取得了成功,并且在非心脏病学环境中以及与利钠肽检测联合使用时似乎特别有用。此外,假阳性的 AIeECG 表明未来会发生 LVSD。没有研究调查其对治疗或患者结局的影响。本系统评价证实了一种新的通用生物标志物 AIeECG 的出现,该标志物可改善 LVSD 的检测。AIeECG 将与利钠肽和超声心动图一起,改善 LVSD 的筛查,但需要进行前瞻性随机实施试验,附加治疗,以显示成本效益和临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/000f/9640840/341d94183f3e/10741_2022_10283_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/000f/9640840/341d94183f3e/10741_2022_10283_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/000f/9640840/341d94183f3e/10741_2022_10283_Fig1_HTML.jpg

相似文献

[1]
Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review.

Heart Fail Rev. 2023-3

[2]
Coenzyme Q10 for heart failure.

Cochrane Database Syst Rev. 2021-2-3

[3]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[4]
Beta-blockers in patients without heart failure after myocardial infarction.

Cochrane Database Syst Rev. 2021-11-5

[5]
Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.

Cochrane Database Syst Rev. 2001

[6]
Doppler trans-thoracic echocardiography for detection of pulmonary hypertension in adults.

Cochrane Database Syst Rev. 2022-5-9

[7]
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients.

Cochrane Database Syst Rev. 2018-6-25

[8]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[9]
Beta-blockers and inhibitors of the renin-angiotensin aldosterone system for chronic heart failure with preserved ejection fraction.

Cochrane Database Syst Rev. 2018-6-28

[10]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

引用本文的文献

[1]
Artificial intelligence-enhanced six-lead portable electrocardiogram device for detecting left ventricular systolic dysfunction: a prospective single-centre cohort study.

Eur Heart J Digit Health. 2025-3-25

[2]
Artificial Intelligence-Enabled Prediction of Heart Failure Risk From Single-Lead Electrocardiograms.

JAMA Cardiol. 2025-4-16

[3]
Synthetic generation of cardiac tissue motion from surface electrocardiograms.

Nat Cardiovasc Res. 2025-4

[4]
Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD.

J Am Coll Cardiol. 2025-4-1

[5]
Efficacy of AI Models in Detecting Heart Failure Using ECG Data: A Systematic Review and Meta-Analysis.

Cureus. 2025-2-7

[6]
A Resting ECG Screening Protocol Improved with Artificial Intelligence for the Early Detection of Cardiovascular Risk in Athletes.

Diagnostics (Basel). 2025-2-16

[7]
Heart failure risk stratification using artificial intelligence applied to electrocardiogram images: a multinational study.

Eur Heart J. 2025-3-13

[8]
An Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD.

medRxiv. 2024-12-27

[9]
Artificial intelligence-based screening for cardiomyopathy in an obstetric population: A pilot study.

Cardiovasc Digit Health J. 2024-4-5

[10]
Revolutionising Acute Cardiac Care With Artificial Intelligence: Opportunities and Challenges.

Can J Cardiol. 2024-10

本文引用的文献

[1]
Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope.

Eur Heart J Digit Health. 2022-5-23

[2]
Predicting heart failure with preserved ejection fraction: revisiting an old friend with new knowledge.

Eur Heart J Digit Health. 2021-2-9

[3]
2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

Circulation. 2022-5-3

[4]
Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis.

J Pers Med. 2022-3-13

[5]
The 'Ten Commandments' of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.

Eur Heart J. 2022-2-10

[6]
Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients-The SaMi-Trop cohort.

PLoS Negl Trop Dis. 2021-12

[7]
The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms.

Int Heart J. 2021

[8]
Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram.

JACC Cardiovasc Imaging. 2022-3

[9]
Artificial Intelligence-Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General Population.

Mayo Clin Proc. 2021-10

[10]
Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction.

Mayo Clin Proc. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索