Jones Emma, Ames Spencer O, Brooks Jesse, Morehouse Johnny, Hill Norah, Mikoshiba Katsuhiko, Suzuki Akinobu, Stirling David P
Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Faculty of Science, Toho University, Funabashi-shi, Chiba-ken 274-8510, Japan; RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan.
Exp Neurol. 2025 Apr;386:115178. doi: 10.1016/j.expneurol.2025.115178. Epub 2025 Feb 3.
Store-operated calcium entry (SOCE) is crucial for cellular processes, including cellular calcium homeostasis and signaling. However, uncontrolled activation of SOCE is implicated in neurological disorders and CNS trauma, but underlying mechanisms remain unclear. We hypothesized that inhibiting SOCE enhances neurological recovery following contusive spinal cord injury (SCI). To investigate key SOCE effectors, stromal interaction molecules (STIM) and Orai channels on neurological recovery following spinal cord injury (SCI), we utilized male and female conditional neuronal Stim1KO mice to investigate the role of neuronal STIM1 in SCI outcome following a mild (30 kdyn) contusion at T13. To investigate Ca2+ store mediated Ca2+ store depletion, and SOCE-mediated refilling in SCI outcome, we inhibited the IPR with 2-APB, and uncoupled STIM/Orai activation with DPB162-AE, respectively. Intravital microscopy demonstrated that neuron specific Stim1KO increased axonal survival post-SCI. Likewise, pharmaceutical uncoupling of STIM1/Orai activation, alone or combined with IPR inhibition, enhanced axon survival 24 h after T13 contusion in male and female Thy1YFP+ mice. Behavioral evaluation of female C57BL/6 J mice revealed that DPB162-AE, alone or combined with 2-APB, improved neurological recovery 4-6 weeks following a moderate (50 kdyn) T9 contusion. Immunohistochemical analysis showed that combined treatment improves axonal sparing, increases astrogliosis, and reduces microglia/macrophage density at the injury epicenter 6 weeks post-SCI. These findings reveal a novel role for neuronal STIM1 in "bystander" secondary axonal degeneration, and introduce STIM/Orai functional uncoupler DPB162-AE, combined with IPR inhibitor 2-APB, as a novel therapeutic approach for improving neurological recovery following SCI.
store-operated钙内流(SOCE)对细胞过程至关重要,包括细胞钙稳态和信号传导。然而,SOCE的不受控制激活与神经疾病和中枢神经系统创伤有关,但其潜在机制仍不清楚。我们假设抑制SOCE可增强脊髓挫伤性损伤(SCI)后的神经恢复。为了研究关键的SOCE效应器、基质相互作用分子(STIM)和Orai通道对脊髓损伤(SCI)后神经恢复的作用,我们利用雄性和雌性条件性神经元Stim1KO小鼠,研究神经元STIM1在T13轻度(30千达因)挫伤后SCI结局中的作用。为了研究Ca2+储存介导的Ca2+储存耗竭以及SOCE介导的在SCI结局中的再填充,我们分别用2-APB抑制IPR,并用DPB162-AE解偶联STIM/Orai激活。活体显微镜检查表明,神经元特异性Stim1KO增加了SCI后轴突的存活。同样,单独或与IPR抑制联合使用的STIM1/Orai激活的药物解偶联,增强了雄性和雌性Thy1YFP+小鼠T13挫伤后24小时的轴突存活。对雌性C57BL/6 J小鼠的行为评估显示,DPB162-AE单独或与2-APB联合使用,在中度(50千达因)T9挫伤后4-6周改善了神经恢复。免疫组织化学分析表明,联合治疗改善了轴突保留,增加了星形胶质细胞增生,并在SCI后6周降低了损伤中心的小胶质细胞/巨噬细胞密度。这些发现揭示了神经元STIM1在“旁观者”继发性轴突变性中的新作用,并引入了STIM/Orai功能解偶联剂DPB162-AE与IPR抑制剂2-APB联合使用,作为改善SCI后神经恢复的一种新的治疗方法。