From the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States of America.
Department of Cellular Biology, University of Georgia, Athens, GA 30602, United States of America.
Cell Signal. 2021 Jul;83:109974. doi: 10.1016/j.cellsig.2021.109974. Epub 2021 Mar 9.
Chronic activation of microglia is a driving factor in the progression of neuroinflammatory diseases, and mechanisms that regulate microglial inflammatory signaling are potential targets for novel therapeutics. Regulator of G protein Signaling 10 is the most abundant RGS protein in microglia, where it suppresses inflammatory gene expression and reduces microglia-mediated neurotoxicity. In particular, microglial RGS10 downregulates the expression of pro-inflammatory mediators including cyclooxygenase 2 (COX-2) following stimulation with lipopolysaccharide (LPS). However, the mechanism by which RGS10 affects inflammatory signaling is unknown and is independent of its canonical G protein targeted mechanism. Here, we sought to identify non-canonical RGS10 interacting partners that mediate its anti-inflammatory mechanism. Through RGS10 co-immunoprecipitation coupled with mass spectrometry, we identified STIM2, an endoplasmic reticulum (ER) localized calcium sensor and a component of the store-operated calcium entry (SOCE) machinery, as a novel RGS10 interacting protein in microglia. Direct immunoprecipitation experiments confirmed RGS10-STIM2 interaction in multiple microglia and macrophage cell lines, as well as in primary cells, with no interaction observed with the homologue STIM1. We further determined that STIM2, Orai channels, and the calcium-dependent phosphatase calcineurin are essential for LPS-induced COX-2 production in microglia, and this pathway is required for the inhibitory effect of RGS10 on COX-2. Additionally, our data demonstrated that RGS10 suppresses SOCE triggered by ER calcium depletion and that ER calcium depletion, which induces SOCE, amplifies pro-inflammatory genes. In addition to COX-2, we also show that RGS10 suppresses the expression of pro-inflammatory cytokines in microglia in response to thrombin and LPS stimulation, and all of these effects require SOCE. Collectively, the physical and functional links between RGS10 and STIM2 suggest a complex regulatory network connecting RGS10, SOCE, and pro-inflammatory gene expression in microglia, with broad implications in the pathogenesis and treatment of chronic neuroinflammation.
小胶质细胞的慢性激活是神经炎症性疾病进展的驱动因素,调节小胶质细胞炎症信号的机制是新型治疗方法的潜在靶点。G 蛋白信号调节因子 10 是小胶质细胞中最丰富的 RGS 蛋白,它抑制炎症基因表达并降低小胶质细胞介导的神经毒性。特别是,小胶质细胞 RGS10 在受到脂多糖 (LPS) 刺激后下调包括环氧化酶 2 (COX-2) 在内的促炎介质的表达。然而,RGS10 影响炎症信号的机制尚不清楚,并且与它的经典 G 蛋白靶向机制无关。在这里,我们试图确定介导其抗炎机制的非典型 RGS10 相互作用伙伴。通过 RGS10 共免疫沉淀与质谱联用,我们鉴定出内质网 (ER) 定位钙传感器 STIM2,是小胶质细胞中一种新型的 RGS10 相互作用蛋白。直接免疫沉淀实验证实了 RGS10-STIM2 在多种小胶质细胞和巨噬细胞系以及原代细胞中的相互作用,而与同源物 STIM1 没有相互作用。我们进一步确定 STIM2、Orai 通道和钙依赖性磷酸酶钙调神经磷酸酶对于 LPS 诱导的小胶质细胞 COX-2 产生是必不可少的,并且该途径对于 RGS10 对 COX-2 的抑制作用是必需的。此外,我们的数据表明 RGS10 抑制 ER 钙耗竭引发的 SOCE,而 ER 钙耗竭诱导 SOCE,放大促炎基因的表达。除了 COX-2 之外,我们还表明 RGS10 抑制小胶质细胞对凝血酶和 LPS 刺激的促炎细胞因子的表达,所有这些作用都需要 SOCE。总之,RGS10 和 STIM2 之间的物理和功能联系表明,在小胶质细胞中存在一个连接 RGS10、SOCE 和促炎基因表达的复杂调控网络,这对慢性神经炎症的发病机制和治疗具有广泛的意义。