Suppr超能文献

基于全人群健康数据的共病网络:890万住院患者(1997 - 2014年)的汇总数据

Comorbidity Networks From Population-Wide Health Data: Aggregated Data of 8.9M Hospital Patients (1997-2014).

作者信息

Dervić Elma, Ledebur Katharina, Thurner Stefan, Klimek Peter

机构信息

Institute of the Science of Complex Systems, Center for Medical Data Science, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.

Complexity Science Hub, Metternichgasse 8, 1030, Vienna, Austria.

出版信息

Sci Data. 2025 Feb 5;12(1):215. doi: 10.1038/s41597-025-04508-9.

Abstract

Comorbidity networks have become a valuable tool to support data-driven biomedical research. Yet, studies often are severely hindered by the availability of the necessary comprehensive data, often due to the sensitivity of health care information. This study presents a population-wide comorbidity network dataset derived from 45 million hospital stays of 8.9 million patients over 17 years in Austria. We present co-occurrence networks of hospital diagnoses, stratified by age, sex, and observation period in a total of 96 different subgroups. For each of these groups we report a range of association measures (e.g., count data, and odds ratios) for all pairs of diagnoses. The dataset provides the possibility to researchers to create their own, tailor-made comorbidity networks from real patient data that can be used as a starting point in quantitative and machine learning methods. This data platform is intended to lead to deeper insights into a wide range of epidemiological, public health, and biomedical research questions.

摘要

共病网络已成为支持数据驱动型生物医学研究的宝贵工具。然而,研究常常因必要的全面数据难以获取而受到严重阻碍,这通常是由于医疗保健信息的敏感性所致。本研究展示了一个基于奥地利17年间890万患者的4500万次住院记录得出的全人群共病网络数据集。我们呈现了按年龄、性别和观察期分层的96个不同亚组的医院诊断共现网络。对于这些组中的每一组,我们报告了所有诊断对的一系列关联度量(例如计数数据和优势比)。该数据集使研究人员能够根据真实患者数据创建自己的定制共病网络,这些网络可用作定量和机器学习方法的起点。这个数据平台旨在深入洞察广泛的流行病学、公共卫生和生物医学研究问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验