Tang Lu, Li Jinxu, Fantus Sophia
Department of Communication and Journalism, Texas A&M University, College Station, TX, USA.
School of Social Work, University of Texas at Arlington, Arlington, TX, USA.
Digit Health. 2023 Jul 6;9:20552076231186064. doi: 10.1177/20552076231186064. eCollection 2023 Jan-Dec.
Artificial intelligence (AI) technologies are transforming medicine and healthcare. Scholars and practitioners have debated the philosophical, ethical, legal, and regulatory implications of medical AI, and empirical research on stakeholders' knowledge, attitude, and practices has started to emerge. This study is a systematic review of published empirical studies of medical AI ethics with the goal of mapping the main approaches, findings, and limitations of scholarship to inform future practice considerations.
We searched seven databases for published peer-reviewed empirical studies on medical AI ethics and evaluated them in terms of types of technologies studied, geographic locations, stakeholders involved, research methods used, ethical principles studied, and major findings.
Thirty-six studies were included (published 2013-2022). They typically belonged to one of the three topics: exploratory studies of stakeholder knowledge and attitude toward medical AI, theory-building studies testing hypotheses regarding factors contributing to stakeholders' acceptance of medical AI, and studies identifying and correcting bias in medical AI.
There is a disconnect between high-level ethical principles and guidelines developed by ethicists and empirical research on the topic and a need to embed ethicists in tandem with AI developers, clinicians, patients, and scholars of innovation and technology adoption in studying medical AI ethics.
人工智能(AI)技术正在改变医学和医疗保健领域。学者和从业者已经对医学人工智能的哲学、伦理、法律和监管影响展开了辩论,并且关于利益相关者的知识、态度和实践的实证研究也开始出现。本研究是对已发表的医学人工智能伦理实证研究的系统综述,目的是梳理学术研究的主要方法、结果和局限性,以为未来的实践考量提供参考。
我们在七个数据库中搜索已发表的关于医学人工智能伦理的同行评审实证研究,并从所研究的技术类型、地理位置、涉及的利益相关者、使用的研究方法、所研究的伦理原则以及主要发现等方面对这些研究进行评估。
纳入了36项研究(发表于2013年至2022年)。它们通常属于三个主题之一:对利益相关者对医学人工智能的知识和态度的探索性研究、检验关于影响利益相关者接受医学人工智能因素的假设的理论构建研究,以及识别和纠正医学人工智能中的偏差的研究。
伦理学家制定的高层次伦理原则和指南与该主题的实证研究之间存在脱节,并且在研究医学人工智能伦理时需要让伦理学家与人工智能开发者、临床医生、患者以及创新和技术采用方面的学者携手合作。