Suppr超能文献

基于人工智能的肌肉减少症诊断应用程序的开发:一项使用健康检查数据集的回顾性队列研究

Development of an artificial intelligence-based application for the diagnosis of sarcopenia: a retrospective cohort study using the health examination dataset.

作者信息

Jeong Chang-Won, Lim Dong-Wook, Noh Si-Hyeong, Lee Sung Hyun, Park Chul

机构信息

STSC Center, Wonkwang University, Iksan, 54538, South Korea.

Smart Team, Wonkwang University Hospital, Iksan, 54538, South Korea.

出版信息

BMC Med Inform Decis Mak. 2025 Feb 5;25(1):61. doi: 10.1186/s12911-025-02900-4.

Abstract

BACKGROUND

Medical imaging techniques for diagnosing sarcopenia have been extensively investigated. Studies have proposed using the T-score and patient information as key diagnostic factors. However, these techniques have either been time-consuming or have required separate calculation processes after collecting each parameter. To address this gap, we propose an artificial intelligence (AI)-based web application that automates the collection of data, classification of the lumbar spine 3 (L3) slices, segmentation of the subcutaneous fat, visceral fat, and muscle areas in the classified L3 slices, and quantitative analysis of the segmented areas.

METHODS

We developed an automated lumbar spine slice classification model using the CNN (EfficientNetV2) algorithm and an automated domain segmentation model to identify the subcutaneous fat, visceral fat, and muscle areas using the U-NET algorithm. These models were used to identify L3 slices from abdominal computed tomography images and divide the images into the three-segmented domains for sarcopenia diagnosis. Additionally, we developed an algorithm for the calculation of T-Score calculated as (measurement value-Young adult mean)/(Young adult SD) using the Aggregation Pipeline by MongoDB, with the mean and standard deviation for skeletal muscle area (SMA), SMA/height, SMA/weight, and SMA/body mass index (BMI) for both sexes and different age groups.

RESULTS

The proposed system demonstrated high accuracy and precision, with an overall accuracy of 97.5% in classifying L3 slices and a segmentation accuracy of 92% for muscle, subcutaneous fat, and visceral fat areas. The T-Score-based analysis provided reliable diagnostic thresholds for sarcopenia, facilitating consistent and accurate assessments. Our diagnostic cutoff points for each index were as follows: SMA (-1.0: 152.55, -2.0: 125.89), SMA/height² (-1.0: 38.84, -2.0: 14.50), SMA/weight (-1.0: 2.14, -2.0: 1.89), and SMA/BMI (-1.0: 6.10, -2.0: 5.18) for men; SMA (-1.0: 96.08, -2.0: 76.96), SMA/height² (-1.0: 37.20, -2.0: 29.36), SMA/weight (-1.0: 1.80, -2.0: 1.61), and SMA/BMI (-1.0: 4.56, -2.0: 4.01) for women. SMA/BMI best reflected the loss of muscle mass in healthy populations by age, showing a more remarkable decrease in muscle mass in men than in women. The values for men gradually decreased after their 20s, and that for women gradually decreased after their 40s, which progressed to a more dramatic decline in the 70s for both sexes.

CONCLUSION

This AI-based web application addresses the limitations of previous diagnostic techniques by automatically analyzing medical images for the classification, segmentation, and calculation of T-scores. The study findings provide a more reliable and accurate diagnostic technique for sarcopenia that can consequently impact patient treatment and outcomes.

摘要

背景

用于诊断肌肉减少症的医学成像技术已得到广泛研究。研究提出将T值和患者信息作为关键诊断因素。然而,这些技术要么耗时,要么在收集每个参数后需要单独的计算过程。为了弥补这一差距,我们提出了一种基于人工智能(AI)的网络应用程序,该程序可自动收集数据、对腰椎3(L3)切片进行分类、对分类后的L3切片中的皮下脂肪、内脏脂肪和肌肉区域进行分割,并对分割后的区域进行定量分析。

方法

我们使用CNN(EfficientNetV2)算法开发了一个自动腰椎切片分类模型,并使用U-NET算法开发了一个自动域分割模型,以识别皮下脂肪、内脏脂肪和肌肉区域。这些模型用于从腹部计算机断层扫描图像中识别L3切片,并将图像分为三个分割域用于肌肉减少症诊断。此外,我们开发了一种算法,使用MongoDB的聚合管道计算T值,计算公式为(测量值-年轻成年人平均值)/(年轻成年人标准差),其中包括男女不同年龄组的骨骼肌面积(SMA)、SMA/身高、SMA/体重和SMA/体重指数(BMI)的平均值和标准差。

结果

所提出的系统显示出高准确性和精确性,在对L3切片进行分类时总体准确率为97.5%,对肌肉、皮下脂肪和内脏脂肪区域的分割准确率为92%。基于T值的分析为肌肉减少症提供了可靠的诊断阈值,有助于进行一致且准确的评估。我们每个指标的诊断临界点如下:男性的SMA(-1.0:152.55,-2.0:125.89)、SMA/身高²(-1.0:38.84,-2.0:14.50)、SMA/体重(-1.0:2.14,-2.0:1.89)和SMA/BMI(-1.0:6.10,-2.0:5.18);女性的SMA(-1.0:96.08,-2.0:76.96)、SMA/身高²(-1.0:37.20,-2.0:29.36)、SMA/体重(-1.0:1.80,-2.0:1.61)和SMA/BMI(-1.0:4.56,-2.0:4.01)。SMA/BMI最能反映健康人群中按年龄划分的肌肉量损失,显示男性的肌肉量下降比女性更显著。男性的值在20多岁后逐渐下降,女性的值在40多岁后逐渐下降,在70多岁时两性均出现更急剧的下降。

结论

这个基于人工智能的网络应用程序通过自动分析医学图像进行分类、分割和T值计算,解决了先前诊断技术的局限性。研究结果为肌肉减少症提供了一种更可靠、准确的诊断技术,并可能因此影响患者的治疗和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c930/11796039/9c7d644ec685/12911_2025_2900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验