Suppr超能文献

耗散克尔腔孤子的相位和强度控制。

Phase and intensity control of dissipative Kerr cavity solitons.

作者信息

Erkintalo Miro, Murdoch Stuart G, Coen Stéphane

机构信息

Department of Physics, The University of Auckland, Auckland, New Zealand.

The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand.

出版信息

J R Soc N Z. 2021 Mar 24;52(2):149-167. doi: 10.1080/03036758.2021.1900296. eCollection 2022.

Abstract

Dissipative Kerr cavity solitons are pulses of light that can persist in coherently driven nonlinear optical resonators. They have attracted significant attention over the past decade due to their rich nonlinear dynamics and key role in the generation of coherent microresonator optical frequency combs. Whilst the vast majority of implementations have relied on continuous wave driving, the soliton's 'plasticity' combined with driving offers attractive advantages for a host of applications. Here we review recent studies into the dynamics and applications of Kerr cavity solitons in the presence of inhomogeneous driving fields. In particular, we summarise the salient theoretical developments that allow for the analysis of cavity soliton motion in the presence of pump phase or amplitude inhomogeneities, and survey relevant experiments across macroscopic fibre ring resonators, monolithic microresonators, and free-space Kerr enhancement cavities.

摘要

耗散克尔腔孤子是能够在相干驱动的非线性光学谐振器中持续存在的光脉冲。在过去十年中,它们因其丰富的非线性动力学以及在相干微谐振器光学频率梳产生中的关键作用而备受关注。虽然绝大多数实现方式都依赖于连续波驱动,但孤子的“可塑性”与驱动相结合,为众多应用提供了诱人的优势。在此,我们回顾了最近关于存在非均匀驱动场时克尔腔孤子动力学及应用的研究。特别地,我们总结了一些重要的理论进展,这些进展能够分析在泵浦相位或幅度不均匀情况下的腔孤子运动,并概述了在宏观光纤环形谐振器、单片微谐振器和自由空间克尔增强腔中的相关实验。

相似文献

1
Phase and intensity control of dissipative Kerr cavity solitons.
J R Soc N Z. 2021 Mar 24;52(2):149-167. doi: 10.1080/03036758.2021.1900296. eCollection 2022.
2
Breathing dissipative solitons in optical microresonators.
Nat Commun. 2017 Sep 29;8(1):736. doi: 10.1038/s41467-017-00719-w.
3
Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator.
Nat Commun. 2021 Jun 29;12(1):4023. doi: 10.1038/s41467-021-24251-0.
4
From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs.
Philos Trans A Math Phys Eng Sci. 2018 Nov 12;376(2135):20180113. doi: 10.1098/rsta.2018.0113.
5
Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator.
Phys Rev Lett. 2016 Mar 11;116(10):103902. doi: 10.1103/PhysRevLett.116.103902.
6
Surpassing the nonlinear conversion efficiency of soliton microcombs.
Nat Photonics. 2023;17(11):992-999. doi: 10.1038/s41566-023-01280-3. Epub 2023 Aug 31.
7
Dispersion-less Kerr solitons in spectrally confined optical cavities.
Light Sci Appl. 2023 Jan 9;12(1):19. doi: 10.1038/s41377-022-01052-8.
8
Chirped dissipative solitons in driven optical resonators.
Optica. 2021 Jun 20;8(6):861-869. doi: 10.1364/optica.419771.
10
Temporal dissipative structures in optical Kerr resonators with transient loss fluctuation.
Opt Express. 2021 Oct 25;29(22):35776-35791. doi: 10.1364/OE.439212.

本文引用的文献

1
Zero dispersion Kerr solitons in optical microresonators.
Nat Commun. 2022 Aug 13;13(1):4764. doi: 10.1038/s41467-022-31916-x.
2
Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator.
Nat Commun. 2021 Jun 29;12(1):4023. doi: 10.1038/s41467-021-24251-0.
3
Stretched-Pulse Soliton Kerr Resonators.
Phys Rev Lett. 2020 Jul 17;125(3):033902. doi: 10.1103/PhysRevLett.125.033902.
4
Massively parallel coherent laser ranging using a soliton microcomb.
Nature. 2020 May;581(7807):164-170. doi: 10.1038/s41586-020-2239-3. Epub 2020 May 13.
5
Direct Kerr frequency comb atomic spectroscopy and stabilization.
Sci Adv. 2020 Feb 28;6(9):eaax6230. doi: 10.1126/sciadv.aax6230. eCollection 2020 Feb.
6
Turn-key, high-efficiency Kerr comb source.
Opt Lett. 2019 Sep 15;44(18):4475-4478. doi: 10.1364/OL.44.004475.
8
Searching for Exoplanets Using a Microresonator Astrocomb.
Nat Photonics. 2019;13:25-30. doi: 10.1038/s41566-018-0312-3. Epub 2018 Dec 14.
10
Dissipative Kerr solitons in optical microresonators.
Science. 2018 Aug 10;361(6402). doi: 10.1126/science.aan8083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验