Suppr超能文献

对齿状颗粒细胞进行电生理校准的光遗传学刺激可减轻去神经支配的器官型内嗅-海马切片培养物中的树突棘损失。

Electrophysiologically calibrated optogenetic stimulation of dentate granule cells mitigates dendritic spine loss in denervated organotypic entorhino-hippocampal slice cultures.

作者信息

Hanauske Tijana, Koretz Carolin Christina, Jungenitz Tassilo, Roeper Jochen, Drakew Alexander, Deller Thomas

机构信息

Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.

Institute for Neurophysiology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.

出版信息

Sci Rep. 2025 Feb 7;15(1):4563. doi: 10.1038/s41598-025-88536-w.

Abstract

Organotypic slice cultures (OTCs) are versatile tools for studying long-term structure-function relationships of neurons within a defined network (e.g. hippocampus). We developed a method for repeated experimenter-controlled activation of hippocampal granule cells (GCs) in OTCs within the incubator. After several days of contact-free photonic stimulation, we were able to ameliorate entorhinal denervation-induced structural damage in GCs. To achieve this outcome, we had to calibrate the intensity and duration of optogenetic (light) pulses using whole-cell electrophysiological recordings and multi-cell calcium imaging. Our findings showed that ChR2-expressing cells generated action potentials (APs) or calcium transients in response to illumination but were otherwise functionally indistinguishable from non-transduced GCs within the same neural circuit. However, the threshold for AP firing in single GCs varied based on the stimulus light intensity and the expression levels of ChR2. This information allowed us to calibrate light intensity for chronic stimulations. Denervated GCs exhibited significant spine loss four days post-denervation, but this detrimental effect was mitigated when AP firing was induced at a physiological GC bursting rate. Phototoxic damage caused by chronic light exposure was significantly reduced if illuminated with longer wavelength and by adding antioxidants to the culture medium. Our study presents a versatile approach for concurrent non-invasive manipulation and observation of neural circuit activity and remodeling in vitro.

摘要

器官型切片培养物(OTCs)是用于研究特定网络(如海马体)内神经元长期结构-功能关系的多功能工具。我们开发了一种方法,可在培养箱内对OTCs中的海马颗粒细胞(GCs)进行重复的实验者控制激活。经过数天的非接触式光子刺激后,我们能够改善内嗅神经去支配诱导的GCs结构损伤。为了实现这一结果,我们必须使用全细胞膜片钳电生理记录和多细胞钙成像来校准光遗传学(光)脉冲的强度和持续时间。我们的研究结果表明,表达ChR2的细胞在光照下会产生动作电位(APs)或钙瞬变,但在功能上与同一神经回路中未转导的GCs没有区别。然而,单个GCs中AP发放的阈值会因刺激光强度和ChR2的表达水平而有所不同。这些信息使我们能够校准慢性刺激的光强度。去支配的GCs在去支配后四天表现出明显的树突棘丢失,但当以生理GC爆发率诱导AP发放时,这种有害影响会减轻。如果用更长的波长照射并在培养基中添加抗氧化剂,慢性光暴露引起的光毒性损伤会显著降低。我们的研究提出了一种在体外同时进行神经回路活动的非侵入性操作和观察以及重塑的多功能方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e6e/11802742/763fd7e2fc98/41598_2025_88536_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验