Suppr超能文献

一种利用机器学习结合遥感地形属性来大规模测定土壤中重金属背景浓度和空间分布的新方法。

A novel method to determine background concentrations and spatial distributions of heavy metals in soil at large scale using machine learning coupled with remote sensing-terrain attributes.

作者信息

Sulieman Magboul M, Kaya Fuat, Al-Farraj Abdullah S, Brevik Eric C

机构信息

Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia.

Department of Soil and Environment Sciences, Faculty of Agriculture, University of Khartoum, P.O. Box 32, 13314, Khartoum North, Shambat, Sudan.

出版信息

MethodsX. 2025 Jan 21;14:103180. doi: 10.1016/j.mex.2025.103180. eCollection 2025 Jun.

Abstract

Soil heavy metals are among the most hazardous materials in the environment. Their harmful effects can extend to surrounding systems (air, plants, water), and given the appropriate conditions may ultimately have negative effects on human health. Thus, preventing pollution and protecting pristine soils and preindustrial areas from human activities that lead to the concentration of heavy metals (HMs) is a priority. Here, a novel methodology was proposed to establish background concentrations of eight soil HMs, cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn), and digitally map their spatial distributions in an area (i.e., harrats region) that has not yet been impacted by industrial activity. The proposed methodology combined measurements of the target HMs and fifty-two environmental covariates (ECOVs) derived from 2017 to 2021 Landsat 8/9 OLI and Shuttle Radar Topography Mission (SRTM)-derived terrain attributes. Random forest and stepwise multiple linear regression models were further used to digitally map the studied HMs. The methodology is important for any future environmental pollution/monitoring studies in the area and can be applied in other similar environments. Machine learning algorithms show great ability to use available environmental variables and investigate the relationships between the factors influencing HMs accumulation under a given soil environment. The proposed methodology was effective for describing HMs spatial variability in the environments investigated. •The proposed method is a novel way to predict soil HMs and their spatial distribution over large areas.•Remote sensing/digital elevation models (DEMs)-derived ECOVs are useful for predicting and digitally mapping soil HMs, thus important for future environmental monitoring studies.•Explainable algorithms (i.e., RF and SMLR) are able to utilize ECOVs for HMs prediction and to establish background concentrations over large areas.Therefore, the combination of machine learning and RS/DEMs-based ECOVs is crucial to overcome the disadvantages of HMs determination via conventional methods.

摘要

土壤重金属是环境中危害最大的物质之一。它们的有害影响会扩展到周围系统(空气、植物、水),在适当条件下最终可能对人类健康产生负面影响。因此,防止污染并保护原始土壤和未受工业化活动影响的地区免受导致重金属(HMs)浓度升高的人类活动影响是当务之急。在此,提出了一种新方法来确定八种土壤重金属,即钴(Co)、铬(Cr)、铜(Cu)、铁(Fe)、锰(Mn)、镍(Ni)、铅(Pb)和锌(Zn)的背景浓度,并以数字方式绘制它们在一个尚未受到工业活动影响的区域(即哈拉特地区)的空间分布。所提出的方法结合了对目标重金属的测量以及从2017年至2021年的陆地卫星8/9号运行陆地成像仪(OLI)和航天飞机雷达地形测绘任务(SRTM)得出的地形属性中获取的52个环境协变量(ECOVs)。随机森林和逐步多元线性回归模型进一步用于以数字方式绘制所研究的重金属。该方法对于该地区未来的任何环境污染/监测研究都很重要,并且可以应用于其他类似环境。机器学习算法在利用可用环境变量以及研究给定土壤环境下影响重金属积累的因素之间的关系方面表现出强大能力。所提出的方法对于描述所研究环境中的重金属空间变异性是有效的。

•所提出的方法是预测大面积土壤重金属及其空间分布的新途径。

•遥感/数字高程模型(DEMs)得出的环境协变量对于预测和以数字方式绘制土壤重金属很有用,因此对未来的环境监测研究很重要。

•可解释算法(即随机森林和逐步多元线性回归)能够利用环境协变量进行重金属预测并在大面积上确定背景浓度。

因此,机器学习与基于遥感/数字高程模型的环境协变量的结合对于克服通过传统方法测定重金属的缺点至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e123/11800095/6bf38e51a66e/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验