Suppr超能文献

GROMACS中基于快速多极子方法静电学的恒定pH模拟。(A)设计与应用。

Constant pH Simulation with FMM Electrostatics in GROMACS. (A) Design and Applications.

作者信息

Briand Eliane, Kohnke Bartosz, Kutzner Carsten, Grubmüller Helmut

机构信息

Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.

出版信息

J Chem Theory Comput. 2025 Feb 25;21(4):1762-1786. doi: 10.1021/acs.jctc.4c01318. Epub 2025 Feb 7.

Abstract

The structural dynamics of biological macromolecules, such as proteins, DNA/RNA, or complexes thereof, are strongly influenced by protonation changes of their typically many titratable groups, which explains their sensitivity to pH changes. Conversely, conformational and environmental changes of the biomolecule affect the protonation state of these groups. With few exceptions, conventional force field-based molecular dynamics (MD) simulations neither account for these effects nor do they allow for coupling to a pH buffer. Here, we present design decisions and applications of a rigorous Hamiltonian interpolation λ-dynamics constant pH method in GROMACS, which rests on GPU-accelerated Fast Multipole Method (FMM) electrostatics. Our implementation supports both CHARMM36m and Amber99sb*-ILDN force fields and is largely automated to enable seamless switching from regular MD to constant pH MD, involving minimal changes to the input files. Here, the first of two companion papers describes the underlying constant pH protocol and sample applications to several prototypical benchmark systems such as cardiotoxin V, lysozyme, and staphylococcal nuclease. Enhanced convergence is achieved through a new dynamic barrier height optimization method, and high p accuracy is demonstrated. We use Functional Mode Analysis (FMA) and Mutual Information (MI) to explore the complex intra- and intermolecular couplings between the protonation states of titratable groups as well as those between protonation states and conformational dynamics. We identify striking conformation-dependent p variations and unexpected inter-residue couplings. Conformation-protonation coupling is identified as a primary cause of the slow protonation convergence notorious to constant pH simulations involving multiple titratable groups, suggesting enhanced sampling methods to accelerate convergence.

摘要

生物大分子(如蛋白质、DNA/RNA或它们的复合物)的结构动力学受到其通常许多可滴定基团质子化变化的强烈影响,这解释了它们对pH变化的敏感性。相反,生物分子的构象和环境变化会影响这些基团的质子化状态。除了少数例外,传统的基于力场的分子动力学(MD)模拟既没有考虑这些影响,也不允许与pH缓冲液耦合。在这里,我们展示了一种在GROMACS中基于严格哈密顿插值λ动力学的恒定pH方法的设计决策和应用,该方法基于GPU加速的快速多极子方法(FMM)静电学。我们的实现支持CHARMM36m和Amber99sb*-ILDN力场,并且在很大程度上是自动化的,能够实现从常规MD无缝切换到恒定pH MD,只需对输入文件进行最小的更改。在这里,两篇配套论文中的第一篇描述了基本的恒定pH协议以及对几个典型基准系统(如心脏毒素V、溶菌酶和葡萄球菌核酸酶)的示例应用。通过一种新的动态势垒高度优化方法实现了增强的收敛,并证明了高p精度。我们使用功能模式分析(FMA)和互信息(MI)来探索可滴定基团质子化状态之间以及质子化状态与构象动力学之间复杂的分子内和分子间耦合。我们确定了显著的构象依赖性p变化和意外的残基间耦合。构象-质子化耦合被确定为涉及多个可滴定基团的恒定pH模拟中质子化收敛缓慢的主要原因,这表明需要增强采样方法来加速收敛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a656/11866755/0f029f8b823d/ct4c01318_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验