Suppr超能文献

GPU 加速的 Amber 中连续恒 pH 分子动力学的实现:使用单 pH 模拟进行 p 预测。

GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Predictions with Single-pH Simulations.

机构信息

Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States.

出版信息

J Chem Inf Model. 2019 Nov 25;59(11):4821-4832. doi: 10.1021/acs.jcim.9b00754. Epub 2019 Nov 14.

Abstract

We present a GPU implementation of the continuous constant pH molecular dynamics (CpHMD) based on the most recent generalized Born implicit-solvent model in the engine of the Amber molecular dynamics package. To test the accuracy of the tool for rapid p predictions, a series of 2 ns single-pH simulations were performed for over 120 titratable residues in 10 benchmark proteins that were previously used to test the various continuous CpHMD methods. The calculated p's showed a root-mean-square deviation of 0.80 and correlation coefficient of 0.83 with respect to experiment. Also, 90% of the p's were converged with estimated errors below 0.1 pH units. Surprisingly, this level of accuracy is similar to our previous replica-exchange simulations with 2 ns per replica and an exchange attempt frequency of 2 ps (Huang, Harris, and Shen 2018 , 58 , 1372 - 1383 ). Interestingly, for the linked titration sites in two enzymes, although residue-specific protonation state sampling in the single-pH simulations was not converged within 2 ns, the protonation fraction of the linked residues appeared to be largely converged, and the experimental macroscopic p values were reproduced to within 1 pH unit. Comparison with replica-exchange simulations with different exchange attempt frequencies showed that the splitting between the two macroscopic p's is underestimated with frequent exchange attempts such as 2 ps, while single-pH simulations overestimate the splitting. The same trend is seen for the single-pH vs replica-exchange simulations of a hydrogen-bonded aspartyl dyad in a much larger protein. A 2 ns single-pH simulation of a 400-residue protein takes about 1 h on a single NVIDIA GeForce RTX 2080 graphics card, which is over 1000 times faster than a CpHMD run on a single CPU core of a high-performance computing cluster node. Thus, we envision that GPU-accelerated continuous CpHMD may be used in routine p predictions for a variety of applications, from assisting MD simulations with protonation state assignment to offering pH-dependent corrections of binding free energies and identifying reactive hot spots for covalent drug design.

摘要

我们提出了一种基于最新型广义 Born 隐溶剂模型的 GPU 连续恒 pH 分子动力学(CpHMD)实现,该模型是 Amber 分子动力学包引擎的一部分。为了测试该工具进行快速 pH 预测的准确性,我们对 10 个基准蛋白中的 120 多个可滴定残基进行了一系列 2 ns 的单 pH 模拟,这些蛋白先前被用于测试各种连续 CpHMD 方法。计算得到的 pH 值与实验值的均方根偏差为 0.80,相关系数为 0.83。此外,90%的 pH 值收敛,估计误差低于 0.1 pH 单位。令人惊讶的是,这种精度水平与我们之前的 replica-exchange 模拟类似,每个副本模拟 2 ns,交换尝试频率为 2 ps(Huang、Harris 和 Shen,2018 年,58,1372-1383)。有趣的是,对于两种酶中的连接滴定位点,尽管单 pH 模拟中 2 ns 内未收敛到特定残基的质子化状态采样,但连接残基的质子化分数似乎已基本收敛,实验宏观 pH 值的重现误差在 1 pH 单位以内。与不同交换尝试频率的 replica-exchange 模拟的比较表明,频繁的交换尝试(如 2 ps)会低估两个宏观 pH 值之间的分裂,而单 pH 模拟会高估分裂。在更大的蛋白质中,对氢键偶联天冬氨酸二联体的单 pH 模拟与 replica-exchange 模拟之间也存在相同的趋势。在单个 NVIDIA GeForce RTX 2080 图形卡上,对一个 400 残基的蛋白质进行 2 ns 的单 pH 模拟需要大约 1 小时,这比在高性能计算集群节点的单个 CPU 核心上运行的 CpHMD 快 1000 多倍。因此,我们设想 GPU 加速的连续 CpHMD 可用于各种应用程序的常规 pH 预测,从协助 MD 模拟分配质子化状态到提供 pH 依赖性的结合自由能校正以及识别共价药物设计的反应热点。

相似文献

引用本文的文献

1
Recent Developments in Amber Biomolecular Simulations.琥珀色生物分子模拟的最新进展。
J Chem Inf Model. 2025 Aug 11;65(15):7835-7843. doi: 10.1021/acs.jcim.5c01063. Epub 2025 Jul 29.
5
Tips and Tricks in the Modeling of Supramolecular Peptide Assemblies.超分子肽组装体建模的技巧与窍门
ACS Omega. 2024 Jul 8;9(29):31254-31273. doi: 10.1021/acsomega.4c02628. eCollection 2024 Jul 23.
10
Comparative Performance of High-Throughput Methods for Protein p Predictions.高通量方法进行蛋白质 p 预测的性能比较。
J Chem Inf Model. 2023 Aug 28;63(16):5169-5181. doi: 10.1021/acs.jcim.3c00165. Epub 2023 Aug 7.

本文引用的文献

2
How Ligand Protonation State Controls Water in Protein-Ligand Binding.配体质子化状态如何在蛋白质-配体结合中控制水。
J Phys Chem Lett. 2018 Sep 20;9(18):5440-5444. doi: 10.1021/acs.jpclett.8b02440. Epub 2018 Sep 10.
7
Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems.用于大型生物分子系统的恒pH分子动力学模拟
J Chem Theory Comput. 2017 Dec 12;13(12):5933-5944. doi: 10.1021/acs.jctc.7b00875. Epub 2017 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验