Suppr超能文献

丹麦绝经后女性骨质疏松性骨折风险的预测——添加自我报告的临床风险因素能否改善基于登记处的FREM算法的预测?

Prediction of imminent osteoporotic fracture risk in Danish postmenopausal women-can the addition of self-reported clinical risk factors improve the prediction of the register-based FREM algorithm?

作者信息

Christensen Emilie Rosenfeldt, Leth Kasper Westphal, Petersen Frederik Lykke, Petersen Tanja Gram, Möller Sören, Abrahamsen Bo, Rubin Katrine Hass

机构信息

Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

OPEN - Open Patient data Explorative Network, Odense University Hospital, Odense, Denmark.

出版信息

Arch Osteoporos. 2025 Feb 7;20(1):21. doi: 10.1007/s11657-024-01493-1.

Abstract

UNLABELLED

Obtaining accurate self-reports on clinical risk factors, such as parental hip fracture or alcohol and tobacco use, limits the utility of conventional risk scores for fracture risk. We demonstrate that fracture-risk prediction based on administrative health data alone performs equally to prediction based on self-reported clinical risk factors.

BACKGROUND

Accurate assessment of fracture risk is crucial. Unlike established risk prediction tools that rely on patient recall, the Fracture Risk Evaluation Model (FREM) utilises register data to estimate the risk of major osteoporotic fracture (MOF). We investigated whether adding self-reported clinical risk factors for osteoporosis to the FREM algorithm improved the prediction of 1-year fracture risk by comparing three approaches: the FREM algorithm (FREM), clinical risk factors (CRF), and FREM combined with clinical risk factors (FREM-CRF).

METHOD

Clinical risk factor information was obtained through questionnaires sent to women aged 65-80 years living in the Region of Southern Denmark in 2010, who participated in the Risk-stratified Osteoporosis Strategy Evaluation study. Register data was obtained through national health registers and linked to the survey data. Positive and negative predictive values and concordance statistics were calculated for the performance of each approach using logistic regression and Cox proportional hazards models.

RESULTS

Of the 18,605 women included, 280 sustained a MOF within 1 year. All three approaches performed similarly in 1-year fracture risk prediction for low- and high-risk individuals. However, the FREM and FREM-CRF approach slightly overestimated fracture risk for medium-risk individuals.

CONCLUSION

Adding self-reported clinical data to FREM did not increase precision in predicting 1-year MOF risk. The discrimination of FREM was similar to that of CRF, suggesting it may be possible to estimate fracture risk with the same precision by using register data instead of self-reported risk information. Register-based prediction models may be applicable in individualised risk monitoring or large-scale osteoporosis screening programmes.

摘要

未标注

获取关于临床风险因素(如父母髋部骨折或烟酒使用情况)的准确自我报告,限制了传统骨折风险评分的效用。我们证明,仅基于行政健康数据的骨折风险预测与基于自我报告的临床风险因素的预测表现相当。

背景

准确评估骨折风险至关重要。与依赖患者回忆的既定风险预测工具不同,骨折风险评估模型(FREM)利用登记数据来估计主要骨质疏松性骨折(MOF)的风险。我们通过比较三种方法来研究将自我报告的骨质疏松临床风险因素添加到FREM算法中是否能改善1年骨折风险的预测:FREM算法(FREM)、临床风险因素(CRF)以及FREM与临床风险因素相结合(FREM-CRF)。

方法

通过向2010年居住在丹麦南部地区、年龄在65 - 80岁的女性发送问卷来获取临床风险因素信息,这些女性参与了风险分层骨质疏松策略评估研究。登记数据通过国家健康登记处获取并与调查数据相链接。使用逻辑回归和Cox比例风险模型计算每种方法在预测性能方面的阳性和阴性预测值以及一致性统计量。

结果

在纳入的18605名女性中,280人在1年内发生了MOF。对于低风险和高风险个体,所有三种方法在1年骨折风险预测中的表现相似。然而,FREM和FREM-CRF方法对中等风险个体的骨折风险略有高估。

结论

将自我报告的临床数据添加到FREM中并未提高预测1年MOF风险的精度。FREM的辨别能力与CRF相似,这表明使用登记数据而非自我报告的风险信息可能以相同的精度估计骨折风险。基于登记的预测模型可能适用于个体化风险监测或大规模骨质疏松筛查项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2277/11805794/fab2d9a666eb/11657_2024_1493_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验