Suppr超能文献

探索基于牙周炎核心铁死亡相关基因的新型风险模型:生物信息学分析与实验验证。

Exploring a novel risk model based on core disulfidptosis-related genes in periodontitis: Bioinformatics analyses and experimental validation.

作者信息

Yang Yiqiang, Liu Qi, Lu Xun, Wang Yuran, Tian Xue, Yang Jiahui, Chen Jia

机构信息

Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, Yinchuan, China.

Department of Prosthodontics, Yinchuan Stomatological Hospital, Yinchuan, China.

出版信息

FASEB J. 2025 Feb 15;39(3):e70368. doi: 10.1096/fj.202401986R.

Abstract

Bacteria in dental plaque invade periodontal tissues, causing chronic inflammation known as periodontitis. Despite advancements in understanding periodontitis, its molecular pathogenesis remains incompletely elucidated. In this study, a total of 247 samples were retrieved from the Gene Expression Omnibus (GEO) database, comprising 183 from individuals with periodontitis and 64 from healthy controls. Differentially expressed DRGs (DE-DRGs) were identified, and their expression correlations were analyzed. Immune cell infiltration and its association with DE-DRGs were assessed. Gene Set Variation Analysis (GSVA) was performed to determine key functions and pathways related to DE-DRGs. Characteristic DE-DRGs (CDE-DRGs) were identified using the Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and a risk model and personalized nomogram were constructed. Model performance was validated through calibration and decision curve analysis (DCA). External experiments, including qRT-PCR and Western blot, confirmed the differential expression of DE-DRGs. Fourteen DE-DRGs were identified. Expression analysis revealed a strong synergistic correlation between MYH9 and ACTB (coefficient = 0.86) and an antagonistic correlation between NCKAP1 and FLNA (coefficient = -0.52). Immune profiling showed significant differences in the proportions of 22 immune cell types between groups, with 14 DE-DRGs correlated with immune infiltration levels. Cluster analysis of periodontitis samples revealed distinct patterns of DE-DRGs expression and immune cell infiltration across two clusters. A risk model incorporating four CDE-DRGs (DSTN, SLC7A11, SLC3A2, and RPN1) was developed, alongside a personalized nomogram for predicting periodontitis risk. qRT-PCR and Western blot analyses demonstrated downregulation of DSTN, SLC3A2, IQGAP1, CD2AP, and NCKAP1 and upregulation of SLC7A11, RPN1, FLNA, MYH9, TLN1, ACTB, MYH10, CAPZB, and PDLIM1 in periodontitis tissues. This study identified key DRGs in periodontitis, developed a predictive risk model and nomogram, and detailed the immune infiltration profile and its association with DRGs. These findings provide insights into the molecular pathogenesis of periodontitis and suggest potential strategies for personalized risk assessment, early diagnosis, and targeted therapy.

摘要

牙菌斑中的细菌侵入牙周组织,引发一种名为牙周炎的慢性炎症。尽管在牙周炎的认识方面取得了进展,但其分子发病机制仍未完全阐明。在本研究中,从基因表达综合数据库(GEO)中总共检索到247个样本,其中183个来自牙周炎患者,64个来自健康对照。鉴定出差异表达的疾病相关基因(DE-DRGs),并分析它们的表达相关性。评估免疫细胞浸润及其与DE-DRGs的关联。进行基因集变异分析(GSVA)以确定与DE-DRGs相关的关键功能和途径。使用最小绝对收缩和选择算子(LASSO)分析鉴定特征性DE-DRGs(CDE-DRGs),并构建风险模型和个性化列线图。通过校准和决策曲线分析(DCA)验证模型性能。包括qRT-PCR和蛋白质免疫印迹在内的外部实验证实了DE-DRGs的差异表达。鉴定出14个DE-DRGs。表达分析显示MYH9和ACTB之间存在强协同相关性(系数=0.86),NCKAP1和FLNA之间存在拮抗相关性(系数=-0.52)。免疫图谱显示两组之间22种免疫细胞类型的比例存在显著差异,14个DE-DRGs与免疫浸润水平相关。对牙周炎样本的聚类分析揭示了两个聚类中DE-DRGs表达和免疫细胞浸润的不同模式。开发了一个包含四个CDE-DRGs(DSTN、SLC7A11、SLC3A2和RPN1)的风险模型,以及一个用于预测牙周炎风险的个性化列线图。qRT-PCR和蛋白质免疫印迹分析表明,牙周炎组织中DSTN、SLC3A2、IQGAP1、CD2AP和NCKAP1下调,SLC7A11、RPN1、FLNA、MYH9、TLN1、ACTB、MYH10、CAPZB和PDLIM1上调。本研究确定了牙周炎中的关键DRGs,开发了预测风险模型和列线图,并详细描述了免疫浸润谱及其与DRGs的关联。这些发现为牙周炎的分子发病机制提供了见解,并提出了个性化风险评估、早期诊断和靶向治疗的潜在策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验