Suppr超能文献

二硫化物诱导细胞程序性坏死相关基因特征作为头颈部鳞状细胞癌的预后生物标志物和免疫治疗反应预测指标

Disulfidptosis-related gene signatures as prognostic biomarkers and predictors of immunotherapy response in HNSCC.

作者信息

Qin Haotian, Xu Juan, Yue Yaohang, Chen Meiling, Zhang Zheng, Xu Panpan, Zheng Yan, Zeng Hui, Weng Jian, Yang Jun, Yu Fei

机构信息

Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.

Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.

出版信息

Front Immunol. 2025 Jan 17;15:1456649. doi: 10.3389/fimmu.2024.1456649. eCollection 2024.

Abstract

BACKGROUND

Disulfidptosis is a newly discovered form of cell death associated with tumorigenesis, particularly under oxidative stress and metabolic disorder conditions. Currently, the biological mechanisms of disulfidptosis-related genes (DRGs) in head and neck squamous cell carcinoma (HNSCC) remain unclear.

METHODS

The study includes sections on methodologies, data sources, clinical data collection, subtype establishment, identification and analysis of differentially expressed genes, genetic variation, and the construction and validation of a DRG prognostic model. Various analyses are conducted, including the relationship between the risk scores model and clinicopathological features, immune status, immune checkpoints, tumor mutational burden (TMB), microsatellite instability (MSI), ESTIMATE, mRNAsi, and drug sensitivity. The study also covers single-cell analysis and DNA methylation analysis of DRGs, and the prediction of potential microRNA and long non-coding RNA target genes. Prognostic DRGs expression in HNSCC is validated through RT-qPCR and immunohistochemistry. The model's predictive capability is confirmed using external validation cohorts from GEO datasets and clinical tissue samples. The role of DSTN in HNSCC is further validated through gene knockout experiments.

RESULTS

We identified four valuable genes (SLC3A2, NUBPL, ACTB, DSTN) and constructed a prognostic model, along with identifying two DRG-related subtypes. Analysis of the DRG risk score revealed that the low-risk group had a better prognosis compared to the high-risk group. Significant correlations were found between the DRG risk score and clinical features, immunotherapy response, drug sensitivity, and genes related to RNA epigenetic modifications. Low-risk HNSCC patients were identified as potential beneficiaries of immune checkpoint inhibitor (ICI) therapy. A regulatory axis involving DSTN, hsa-miR-181c-5p, LUCAT1, and IGFL2-AS1 was constructed for HNSCC. RT-qPCR and IHC data further validated the upregulation of prognostic DRGs in HNSCC. The prognostic model demonstrated excellent predictive performance for the prognosis of HNSCC patients. Additionally, DSTN was significantly overexpressed in tumor cells; its knockdown inhibited tumor cell proliferation, migration, and invasion.

CONCLUSION

The prognostic model effectively predicts HNSCC outcomes, with better prognosis in the low-risk group. DSTN upregulation promotes tumor growth, and its knockout inhibits proliferation, migration, and invasion.

摘要

背景

双硫死亡是一种新发现的与肿瘤发生相关的细胞死亡形式,尤其是在氧化应激和代谢紊乱条件下。目前,头颈部鳞状细胞癌(HNSCC)中双硫死亡相关基因(DRGs)的生物学机制仍不清楚。

方法

该研究包括方法学、数据来源、临床数据收集、亚型建立、差异表达基因的鉴定与分析、基因变异以及DRG预后模型的构建与验证等部分。进行了各种分析,包括风险评分模型与临床病理特征、免疫状态、免疫检查点、肿瘤突变负荷(TMB)、微卫星不稳定性(MSI)、ESTIMATE、mRNAsi和药物敏感性之间的关系。该研究还涵盖了DRGs的单细胞分析和DNA甲基化分析,以及潜在的微小RNA和长链非编码RNA靶基因的预测。通过RT-qPCR和免疫组织化学验证了HNSCC中预后DRGs的表达。使用来自GEO数据集的外部验证队列和临床组织样本证实了该模型的预测能力。通过基因敲除实验进一步验证了DSTN在HNSCC中的作用。

结果

我们鉴定出四个有价值的基因(SLC3A2、NUBPL、ACTB、DSTN)并构建了一个预后模型,同时鉴定出两种DRG相关亚型。对DRG风险评分的分析表明,低风险组的预后优于高风险组。发现DRG风险评分与临床特征、免疫治疗反应、药物敏感性以及与RNA表观遗传修饰相关的基因之间存在显著相关性。低风险HNSCC患者被确定为免疫检查点抑制剂(ICI)治疗的潜在受益者。为HNSCC构建了一个涉及DSTN、hsa-miR-181c-5p、LUCAT1和IGFL2-AS1的调控轴。RT-qPCR和免疫组化数据进一步验证了HNSCC中预后DRGs的上调。该预后模型对HNSCC患者的预后表现出优异的预测性能。此外,DSTN在肿瘤细胞中显著过表达;其敲低抑制了肿瘤细胞的增殖、迁移和侵袭。

结论

该预后模型有效预测HNSCC的预后,低风险组预后较好。DSTN的上调促进肿瘤生长,其敲除抑制增殖、迁移和侵袭。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94fb/11782277/f99758f5b540/fimmu-15-1456649-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验