Guo Yuquan, Han Siyang, Yu Weisheng, Xu Yaolin, Ying Ying, Xu Huaxiang, Feng Haokang, Wang Xu'an, Wu Wenchuan, Wang Dansong, Liu Liang, Han Xu, Lou Wenhui
Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
Hepatobiliary Surg Nutr. 2025 Feb 1;14(1):78-95. doi: 10.21037/hbsn-24-282. Epub 2025 Jan 17.
Cachexia-induced skeletal muscle atrophy is a critical manifestation in Kirsten rat sarcoma viral oncogene homologue (KRAS)-mutant pancreatic cancer (PC) patients, predominantly characterized by a shift in metabolic equilibrium towards catabolism that accelerates protein degradation in myofibers and leads to muscle atrophy. This metabolic reprogramming not only supports tumor growth but also precipitates energy depletion in skeletal muscle tissues. Exploring these mechanisms reveals potential therapeutic targets in the metabolic and proteolytic pathways associated with KRAS-mutant PC.
A comprehensive search for literature was conducted in PubMed, Web of Science, Google Scholar and other search engines up to May 21, 2024. Studies on PC models and patients were included.
The crosstalk between KRAS-mutant PC and skeletal muscle atrophy can be categorized into four principal domains: (I) KRAS-driven metabolic reprogramming in cancer cells leads to the depletion of muscle energy reserves, thereby influencing the reallocation of myofiber energy towards fueling cancer cell; (II) KRAS-mutant cancer cells rely on nutrient-scavenging pathways, resulting in altered cytokine profiles, increased ubiquitin mRNA expression and autophagy-lysosome pathway, which facilitate myotube degradation and inhibit muscle regeneration, thereby disrupting muscular homeostasis and causing a one-way nutrient flux; (III) tumor-induced oxidative stress inflicts damage on myotubes, highlighting the detrimental effects of reactive oxygen species on muscle structure; (IV) KRAS-mutant cancer cells remodulate immune cell dynamics within the tumor environment, thereby reshaping host immunity. Together, these findings illuminate the intricate interplay between KRAS-mutant PC and skeletal muscle atrophy, mapping the pathophysiological framework that is crucial for understanding sarcopenia and related disorders.
This comprehensive analysis advances our understanding of the complex etiology of cancer cachexia and stimulates the development of targeted therapeutic strategies.
恶病质诱导的骨骼肌萎缩是 Kirsten 大鼠肉瘤病毒癌基因同源物(KRAS)突变型胰腺癌(PC)患者的关键表现,其主要特征是代谢平衡向分解代谢转变,加速肌纤维中的蛋白质降解并导致肌肉萎缩。这种代谢重编程不仅支持肿瘤生长,还会导致骨骼肌组织中的能量消耗。探索这些机制揭示了与 KRAS 突变型 PC 相关的代谢和蛋白水解途径中的潜在治疗靶点。
截至 2024 年 5 月 21 日,在 PubMed、科学网、谷歌学术等搜索引擎中进行了全面的文献检索。纳入了关于 PC 模型和患者的研究。
KRAS 突变型 PC 与骨骼肌萎缩之间的相互作用可分为四个主要领域:(I)KRAS 驱动的癌细胞代谢重编程导致肌肉能量储备耗竭,从而影响肌纤维能量向癌细胞供能的重新分配;(II)KRAS 突变型癌细胞依赖营养清除途径,导致细胞因子谱改变、泛素 mRNA 表达增加和自噬-溶酶体途径,促进肌管降解并抑制肌肉再生,从而破坏肌肉稳态并导致单向营养通量;(III)肿瘤诱导的氧化应激对肌管造成损伤,突出了活性氧对肌肉结构的有害影响;(IV)KRAS 突变型癌细胞重塑肿瘤环境中的免疫细胞动态,从而重塑宿主免疫。这些发现共同阐明了 KRAS 突变型 PC 与骨骼肌萎缩之间的复杂相互作用,描绘了对于理解肌肉减少症和相关疾病至关重要的病理生理框架。
这一全面分析增进了我们对癌症恶病质复杂病因的理解,并推动了靶向治疗策略的发展。