Suppr超能文献

基于鞘脂相关基因特征的机器学习驱动的胰腺癌预后模型:开发与验证

Machine learning-driven prognostic model based on sphingolipid-related gene signature in pancreatic cancer: development and validation.

作者信息

Zou Qi, Jiang Hailin, Sun Qihui, Peng Qian, He Jie, Xie Keping, Wei Fang

机构信息

Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, Guangzhou, China.

Center for Pancreatic Cancer Research and Department of Immunology, South China University of Technology School of Medicine, Guangzhou, China.

出版信息

Transl Cancer Res. 2025 May 30;14(5):2779-2796. doi: 10.21037/tcr-24-1893. Epub 2025 May 26.

Abstract

BACKGROUND

Pancreatic cancer, a highly malignant tumor with poor prognosis, lacks effective early diagnosis and treatment strategies. Sphingolipids have emerged as key players in tumorigenesis, with certain sphingolipid-related genes linked to patient survival. This study aims to identify prognostic glycosphingolipid (GSL)-related genes and construct a predictive model to improve survival prediction and guide personalized treatment. By providing potential biomarkers, our findings may enhance clinical decision-making and offer new insights into pancreatic cancer diagnosis and therapy.

METHODS

This study utilized 150 pancreatic cancer samples from The Cancer Genome Atlas-Pancreatic Adenocarcinoma (TCGA-PAAD) and 69 from GSE62452 [Gene Expression Omnibus (GEO)] for training and validation. Cox univariate regression identified sphingolipid-related genes with prognostic value. Over 100 machine learning algorithms, including Cox models, support vector machines (SVM), and random forests (RF), were applied to construct an optimal survival prediction model for pancreatic ductal adenocarcinoma (PDAC). Model accuracy was evaluated using the concordance index (C-index). Enrichment, immune infiltration, mutation spectrum, and cell communication analyses were performed to explore sphingolipid mechanisms in pancreatic cancer.

RESULTS

Using 10 machine learning algorithms, we developed over 100 models to predict sphingolipid-related survival in pancreatic cancer. A robust prognostic model was constructed, incorporating three GSL-related genes (, , ), represented by the equation: weighted score = 0.469 * MET + (-0.357) * GBA2 + 0.103 * DEFB1. The model demonstrated strong predictive performance, with a C-index of 0.854 for overall survival in 150 pancreatic cancer patients from the TCGA database and 0.652 in 69 patients from the GEO validation set. Pathway enrichment analysis revealed that high-risk patients were significantly enriched in oncogenic and immune-related pathways. Mutation spectrum analysis indicated a higher mutation load in high-risk patients, with mutations concentrated in common oncogenic pathways. Immune infiltration analysis showed that the risk score positively correlated with immune-suppressive genes but negatively correlated with immune-killing cell infiltration. Cell communication analysis highlighted elevated activity in the macrophage migration inhibitory factor (MIF) pathway within high-risk groups, associated with tumor proliferation and immune escape. In conclusion, this study establishes a sphingolipid-based prognostic model with significant potential for predicting pancreatic cancer outcomes.

CONCLUSIONS

The sphingolipid-based model accurately predicts pancreatic cancer survival and suggests sphingolipids promote tumor progression by mediating immune-suppressive microenvironments, aiding prognostic prediction and personalized treatment.

摘要

背景

胰腺癌是一种预后较差的高度恶性肿瘤,缺乏有效的早期诊断和治疗策略。鞘脂已成为肿瘤发生的关键因素,某些与鞘脂相关的基因与患者生存相关。本研究旨在鉴定与预后糖鞘脂(GSL)相关的基因,并构建预测模型以改善生存预测并指导个性化治疗。通过提供潜在的生物标志物,我们的发现可能会加强临床决策,并为胰腺癌的诊断和治疗提供新的见解。

方法

本研究使用了来自癌症基因组图谱-胰腺腺癌(TCGA-PAAD)的150份胰腺癌样本和来自基因表达综合数据库(GEO)的GSE62452数据集的69份样本进行训练和验证。Cox单变量回归确定具有预后价值的鞘脂相关基因。应用包括Cox模型、支持向量机(SVM)和随机森林(RF)在内的100多种机器学习算法,构建胰腺导管腺癌(PDAC)的最佳生存预测模型。使用一致性指数(C-index)评估模型准确性。进行富集、免疫浸润、突变谱和细胞通讯分析,以探索胰腺癌中的鞘脂机制。

结果

使用10种机器学习算法,我们开发了100多个模型来预测胰腺癌中与鞘脂相关的生存情况。构建了一个强大的预后模型,纳入了三个与GSL相关的基因(、、),公式为:加权评分 = 0.469 * MET + (-0.357) * GBA2 + 0.103 * DEFB1。该模型表现出强大的预测性能,在TCGA数据库的150例胰腺癌患者中,总生存的C-index为0.854,在GEO验证集中的69例患者中为0.652。通路富集分析显示,高危患者在致癌和免疫相关通路中显著富集。突变谱分析表明高危患者的突变负荷更高,突变集中在常见的致癌通路中。免疫浸润分析表明,风险评分与免疫抑制基因呈正相关,但与免疫杀伤细胞浸润呈负相关。细胞通讯分析突出了高危组中巨噬细胞迁移抑制因子(MIF)通路的活性升高,与肿瘤增殖和免疫逃逸相关。总之,本研究建立了一个基于鞘脂的预后模型,在预测胰腺癌预后方面具有显著潜力。

结论

基于鞘脂的模型准确预测胰腺癌生存情况,并表明鞘脂通过介导免疫抑制微环境促进肿瘤进展,有助于预后预测和个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/735a/12170279/efd1a8ec25f5/tcr-14-05-2779-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验