Suppr超能文献

使用约束球面反褶积的皮质脊髓束分割中的人工智能

Artificial intelligence in corticospinal tract segmentation using constrained spherical deconvolution.

作者信息

Freitas Erom Lucas Alves, Fernandes de Oliveira Santos Bruno

机构信息

Department of Medicine, Federal University of Sergipe, Aracaju, Brazil.

Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil.

出版信息

Surg Neurol Int. 2025 Jan 31;16:32. doi: 10.25259/SNI_982_2024. eCollection 2025.

Abstract

BACKGROUND

Tractography of cerebral white matter tracts is a technique with applications in neurosurgical planning and the diagnosis of neurological diseases. In this context, the approach based on the constrained spherical deconvolution (CSD) algorithm allows for more efficient and plausible segmentations. This study aimed to compare two CSD techniques for corticospinal tract (CST) segmentation.

METHODS

This study examined 40 diffusion-weighted images (DWIs) acquired at 7T from healthy participants in the human connectome project (HCP) and 12 clinical 1.5T DWIs from patients undergoing neurosurgical procedures. Tractography was performed using two techniques: regions of interest-based approach and an automatic approach using the TractSeg neural network. The volume of the CST segmented by the two methods was compared using the Dice similarity coefficient.

RESULTS

There was a low similarity between the CST volumes segmented by the two techniques (Dice index for the HCP: 0.479 ± 0.04; Dice index for the Clinical: 0.404 ± 0.08). However, both techniques achieved high levels of consistency in sequential measurements, with intraclass correlation coefficient values above 0.995 for all comparisons. In addition, all selected metrics showed significant differences when comparing the two techniques (HCP - volume < 0.0001, fractional anisotropy [FA] = 0.0061, mean diffusivity [MD] < 0.0001; Clinical - volume < 0.0001, FA = 0.0018, MD = 0.0018).

CONCLUSION

Both methods demonstrate a high degree of consistency; however, the automatic approach appears to be more consistent overall. When comparing the CST segmentations between the two methods, we observed only a moderate similarity and differences in all considered metrics.

摘要

背景

脑白质束的纤维束成像技术在神经外科手术规划和神经系统疾病诊断中具有应用价值。在此背景下,基于约束球面反卷积(CSD)算法的方法能够实现更高效且合理的分割。本研究旨在比较两种用于皮质脊髓束(CST)分割的CSD技术。

方法

本研究检查了人类连接组计划(HCP)中健康参与者在7T下获取的40幅扩散加权图像(DWI)以及12例接受神经外科手术患者的临床1.5T DWI。使用两种技术进行纤维束成像:基于感兴趣区域的方法和使用TractSeg神经网络的自动方法。使用Dice相似系数比较两种方法分割的CST体积。

结果

两种技术分割的CST体积之间相似度较低(HCP的Dice指数:0.479±0.04;临床数据的Dice指数:0.404±0.08)。然而,两种技术在连续测量中均达到了高度一致性,所有比较的组内相关系数值均高于0.995。此外,在比较两种技术时,所有选定指标均显示出显著差异(HCP - 体积<0.0001,分数各向异性[FA]=0.0061,平均扩散率[MD]<0.0001;临床数据 - 体积<0.0001,FA = 0.0018,MD = 0.0018)。

结论

两种方法均显示出高度一致性;然而,自动方法总体上似乎更一致。在比较两种方法的CST分割时,我们观察到在所有考虑的指标中只有适度的相似度和差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f9/11799708/59fcdccda37d/SNI-16-32-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验